Answer:
Each mutant would be mated to wild type and to every other mutant to create diploid strains. The diploids would be assayed for growth at permissive and restrictive temperature. Diploids formed by mating a mutant to a wild type that can grow at restrictive temperatures identify the mutation as recessive. Only recessive mutations can be studied using complementation analysis. Diploids formed by mating two recessive mutants identify mutations in the same gene if the diploid cannot grow at restrictive temperature (non-complementation), and they identify mutations in different genes if the diploids can grow at restrictive temperature (complementation).
Explanation:
Recessive mutations are those whose phenotypic effects are only visible in homo-zygous individuals. Moreover, a complementation test is a genetic technique used to determine if two different mutations associated with a phenotype colocalize in the same <em>locus</em> (i.e., they are alleles of the same gene) or affect two different <em>loci</em>. In diploid (2n) organisms, this test is performed by crossing two homo-zygous recessive mutants and then observing whether offspring have the wild-type phenotype. When two different recessive mutations localize in different <em>loci</em>, they can be considered as 'complementary' since the heterozygote condition may rescue the function lost in homo-zygous recessive mutants. In consequence, when two recessive mutations are combined in the same genetic background (i.e., in the same individual) and they produce the same phenotype, it is possible to determine that both mutations are alleles of the same gene/<em>locus</em>.
One cell produces two genetically identical daughter cells is both mitosis and meiosis.
The reason for the loss of color after the industrial revolution is that the light-colored moths were "selected against" by predators. These birds could only see the light ones against the newly dark, sooted background. Over time, these predators could no longer distinguish the dark ones from their natural dark, sooted background. Thus more light-colored moths stood out against the dark soot, and were eaten. And more dark-colored moths eluded the birds, survived to reproduce, passing on more of their dominant genes for dark color to their offspring. After several decades of hundreds of thousands of generations, most of the later generations were dark, due to selective advantage of camouflage to survive predation.
Answer:
The oxygen enters the bloodstream from the alveoli, tiny sacs in the lungs where gas exchange takes place (Figure below). The transfer of oxygen into the blood is through simple diffusion. ... While oxygen moves from the capillaries and into body cells, carbon dioxide moves from the cells into the capillaries.
Explanation: