Answer:
if an atom gains an electron, the ion has negetive charge
Answer:
0.1 M NaOH, 3 M NH3, 0.01 M CH3COOH, 0.01 M H2SO4, 0.1 M HCl
Explanation:
Strong acids are more acids than weak acids. In the same way, strong bases are more basic than weak bases that are in the same concentration.
Then, the more concentrated acid or base will be more acidic or basic.
CH3COOH. Weak acid
NaOH. Strong base
H2SO4. Strong acid
NH3. Weak base.
HCl. Strong acid
The less acid (More basic):
<h3>0.1 M NaOH, 3 M NH3, 0.01 M CH3COOH, 0.01 M H2SO4, 0.1 M HCl</h3>
Strong base, weak base, weak acid, diluted strong acid, undiluted strong acid
18. Reaction will occur.
19. Reaction Will occur.
20. Reaction will occur.
21. Reaction will occur.
22. Reaction won't occur.
23. Reaction will occur.
24. Reaction will occur.
25. Reaction won't occur.
<h3><u>Explanation</u>:</h3>
The reaction rate of the metals with water, steam, acid, or hydroxides or their inert behavior towards them are noted in the metal activity series.
It contains all the metals one after the other which and the upper metal can replace the lower metal from its salt.
Calcium can replace hydrogen from acid, so the reaction will occur in 18. The products formed are calcium phosphate and hydrogen gas.
Chlorine is more reactive than bromine. So it can replace bromine from its salt to from bromine gas and magnesium chloride.
Aluminium can replace iron from its salt. So it will form aluminium oxide and iron metal. This reaction is used to obtain iron from ores.
Zinc can replace hydrogen from acid. So the products will be zinc chloride and hydrogen gas.
Chromium cannot displace hydrogen form water. So the reaction won't occur.
Tin can replace hydrogen form acid. So the reaction will proceed.
Magnesium will replace platinum from its salt. So magnesium oxide and platinum will form.
Bismuth cannot replace hydrogen from acid. So the reaction won't proceed.
Answer:
Alumminum hydroxide reacts with sulfuric acid as follows: 2Al(OH)3+H2SO4-->Al2(SO4)+6H2O.
Explanation:
plz mark as brainlist
Answer:
The effects of supercritical CO2 (SC-CO2) on the microbiological, sensory (taste, odour, and colour), nutritional (vitamin C content), and physical (cloud, total acidity, pH, and °Brix) qualities of orange juice were studied. The CO2 treatment was performed in a 1 litre capacity double-walled reactor equipped with a magnetic stirring system. Freshly extracted orange juice was treated with supercritical CO2, pasteurised at 90°C, or left untreated. There were no significant differences in the sensory attributes and physical qualities between the CO2 treated juice and freshly extracted juice. The CO2 treated juice retained 88% of its vitamin C, while the pasteurised juice was notably different from the fresh juice and preserved only 57% of its vitamin C content. After 8 weeks of storage at 4°C, there was no microbial growth in the CO2 treated juice.