Answer:
Explanation:
a )
In space due to weightlessness both astronaut and her oxygen tank will float .
when she throws the tank away from spacecraft , she will have a velocity in opposite direction ie towards the spacecraft . This happens due to conservation of momentum . She creates a momentum away so that she can get a momentum towards the spaceship.
So
m₁ v₁ = m₂v₂
12 x 8 = ( 87 - 12 ) x v₂
v₂ = 1.28 m /s
Time allowed = 2 x 60
= 120 s
So maximum distance upto which she can remain away from spacecraft
= 120 x 1.28
= 153 m .
b )
The Newton's law which explains the theory behind it is "third law of motion" . This law gives law of conservation of momentum .
Answer:
(a) Tangential velocity will be 38.648 m/sec
(b) Acceleration will be 
Explanation:
We have given radius r = 11.2 m
Angular speed 
(a) We have to find the tangential velocity
We know that tangential velocity is given by

(b) We know that acceleration is given by

Answer:
Probability of tunneling is 
Solution:
As per the question:
Velocity of the tennis ball, v = 120 mph = 54 m/s
Mass of the tennis ball, m = 100 g = 0.1 kg
Thickness of the tennis ball, t = 2.0 mm = 
Max velocity of the tennis ball,
= 89 m/s
Now,
The maximum kinetic energy of the tennis ball is given by:

Kinetic energy of the tennis ball, KE' = 
Now, the distance the ball can penetrate to is given by:


Thus



Now,
We can calculate the tunneling probability as:



Taking log on both the sides:


Answer:
210 m
Explanation:
Given:
a = -6.8 m/s²
v₀ = 54 m/s
v = 0 m/s
Find: Δx
v² = v₀² + 2aΔx
(0 m/s)² = (54 m/s)² + 2 (-6.8 m/s²) Δx
Δx ≈ 210 m
Answer:
Time taken, t = 4.86 seconds
Explanation:
Given that,
Acceleration of a particular automobile, 
Initial speed of the automobile, u = 75 km/h = 20.83 m/s
Final speed of the automobile, v = 110 km/h = 30.55 m/s
We need to find the time taken to accelerate from u to v. Let t is the time taken. It can be calculate as :


t = 4.86 seconds
So, the time taken by the automobile is 4.86 seconds. Hence, this is the required solution.