Pretty sure it’s A. Hope this helps.
Answer:
–77867 m/s/s.
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 34.5 m/s
Final velocity (v) = –23.9 m/s
Time (t) = 0.00075 s
Acceleration (a) =?
Acceleration is simply defined as the rate of change of velocity with time. Mathematically, it is expressed as:
Acceleration = (final velocity – Initial velocity) /time
a = (v – u) / t
With the above formula, we can obtain acceleration of the ball as follow:
Initial velocity (u) = 34.5 m/s
Final velocity (v) = –23.9 m/s
Time (t) = 0.00075 s
Acceleration (a) =?
a = (v – u) / t
a = (–23.9 – 34.5) / 0.00075
a = –58.4 / 0.00075
a = –77867 m/s/s
Thus, the acceleration of the ball is –77867 m/s/s.
Gravity decreases your kinetic energy when you are driving uphill since the direction of motion is opposite for both. Driving uphill is force going upward while gravity pulls object down. When it is going downhill, the car tends to go faster since the gravity helps the object to go down by adding another value to the total acceleration of the motion of the object. Using the forces of balance, an object going up tends to become heavier while object going down tends to become lighter because of the gravity factor. Another analogy is the motion of elevators going up and down that incurs effects to your weiight.