1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kazeer [188]
3 years ago
10

I NEED HELP PLEASE THANKS

Mathematics
1 answer:
Simora [160]3 years ago
8 0

Answer:

D. Reflect across the x-axis, then shift 4 units up

Step-by-step explanation:

In this case, reflecting across the x-axis just means going 4 units down. To go back up, go 4 units up.

You might be interested in
Statistics when mode is best measure of central tendency.
ehidna [41]

Answer:

The mode is the least used of the measures of central tendency

Step-by-step explanation:

6 0
3 years ago
Find the equation of the line with slope = -2 and passing through (3,2). Write your equation in the form
horrorfan [7]

Answer:

Step-by-step explanation:

y - 2 = -2(x - 3)

y - 2 = -2x + 6

y = -2x + 8

3 0
3 years ago
This too!!<br><br><br><br><br> . <br> Please<br><br><br><br><br> .
REY [17]

Answer:

In order to tell if these are congruent triangles we would need to know if angles Y and V were congruent, angles X and W are congruent or if segments XU and WU were congruent.

Step-by-step explanation:

Any of these would work because you can use two different methods to telling that these are congruent triangles.

The first method is called side-angle-side. In it you need two side lengths that are congruent with a congruent angle in the middle. Since we already know that the right angle in the middle is congruent, and we know YU and VU are congruent, we would just need to know the additional side to prove congruence.

The second method is called angle, angle side. In this we need to know that two angles in a row are congruent followed by a side. Since we know the middle angle is the same, knowing either other angles would give us this method as well.

8 0
4 years ago
Is (2, 2) a solution to the inequality 2x+5y&lt; 20​
mojhsa [17]

Answer:

yus

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Particle P moves along the y-axis so that its position at time t is given by y(t)=4t−23 for all times t. A second particle, part
sergey [27]

a) The limit of the position of particle Q when time approaches 2 is -\pi.

b) The velocity of particle Q is v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}} for all t \ne 2.

c) The rate of change of the distance between particle P and particle Q at time t = \frac{1}{2} is \frac{4\sqrt{82}}{9}.

<h3>How to apply limits and derivatives to the study of particle motion</h3>

a) To determine the limit for t = 2, we need to apply the following two <em>algebraic</em> substitutions:

u = \pi t (1)

k = 2\pi - u (2)

Then, the limit is written as follows:

x(t) =  \lim_{t \to 2} \frac{\sin \pi t}{2-t}

x(t) =  \lim_{t \to 2} \frac{\pi\cdot \sin \pi t}{2\pi - \pi t}

x(u) =  \lim_{u \to 2\pi} \frac{\pi\cdot \sin u}{2\pi - u}

x(k) =  \lim_{k \to 0} \frac{\pi\cdot \sin (2\pi-k)}{k}

x(k) =  -\pi\cdot  \lim_{k \to 0} \frac{\sin k}{k}

x(k) = -\pi

The limit of the position of particle Q when time approaches 2 is -\pi. \blacksquare

b) The function velocity of particle Q is determined by the <em>derivative</em> formula for the division between two functions, that is:

v_{Q}(t) = \frac{f'(t)\cdot g(t)-f(t)\cdot g'(t)}{g(t)^{2}} (3)

Where:

  • f(t) - Function numerator.
  • g(t) - Function denominator.
  • f'(t) - First derivative of the function numerator.
  • g'(x) - First derivative of the function denominator.

If we know that f(t) = \sin \pi t, g(t) = 2 - t, f'(t) = \pi \cdot \cos \pi t and g'(x) = -1, then the function velocity of the particle is:

v_{Q}(t) = \frac{\pi \cdot \cos \pi t \cdot (2-t)-\sin \pi t}{(2-t)^{2}}

v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}}

The velocity of particle Q is v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}} for all t \ne 2. \blacksquare

c) The vector <em>rate of change</em> of the distance between particle P and particle Q (\dot r_{Q/P} (t)) is equal to the <em>vectorial</em> difference between respective vectors <em>velocity</em>:

\dot r_{Q/P}(t) = \vec v_{Q}(t) - \vec v_{P}(t) (4)

Where \vec v_{P}(t) is the vector <em>velocity</em> of particle P.

If we know that \vec v_{P}(t) = (0, 4), \vec v_{Q}(t) = \left(\frac{2\pi\cdot \cos \pi t - \pi\cdot t \cdot \cos \pi t + \sin \pi t}{(2-t)^{2}}, 0 \right) and t = \frac{1}{2}, then the vector rate of change of the distance between the two particles:

\dot r_{P/Q}(t) = \left(\frac{2\pi \cdot \cos \pi t - \pi\cdot t \cdot \cos \pi t + \sin \pi t}{(2-t)^{2}}, -4 \right)

\dot r_{Q/P}\left(\frac{1}{2} \right) = \left(\frac{2\pi\cdot \cos \frac{\pi}{2}-\frac{\pi}{2}\cdot \cos \frac{\pi}{2} +\sin \frac{\pi}{2}}{\frac{3}{2} ^{2}}, -4 \right)

\dot r_{Q/P} \left(\frac{1}{2} \right) = \left(\frac{4}{9}, -4 \right)

The magnitude of the vector <em>rate of change</em> is determined by Pythagorean theorem:

|\dot r_{Q/P}| = \sqrt{\left(\frac{4}{9} \right)^{2}+(-4)^{2}}

|\dot r_{Q/P}| = \frac{4\sqrt{82}}{9}

The rate of change of the distance between particle P and particle Q at time t = \frac{1}{2} is \frac{4\sqrt{82}}{9}. \blacksquare

<h3>Remark</h3>

The statement is incomplete and poorly formatted. Correct form is shown below:

<em>Particle </em>P<em> moves along the y-axis so that its position at time </em>t<em> is given by </em>y(t) = 4\cdot t - 23<em> for all times </em>t<em>. A second particle, </em>Q<em>, moves along the x-axis so that its position at time </em>t<em> is given by </em>x(t) = \frac{\sin \pi t}{2-t}<em> for all times </em>t \ne 2<em>. </em>

<em />

<em>a)</em><em> As times approaches 2, what is the limit of the position of particle </em>Q?<em> Show the work that leads to your answer. </em>

<em />

<em>b) </em><em>Show that the velocity of particle </em>Q<em> is given by </em>v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t +\sin \pi t}{(2-t)^{2}}<em>.</em>

<em />

<em>c)</em><em> Find the rate of change of the distance between particle </em>P<em> and particle </em>Q<em> at time </em>t = \frac{1}{2}<em>. Show the work that leads to your answer.</em>

To learn more on derivatives, we kindly invite to check this verified question: brainly.com/question/2788760

3 0
2 years ago
Other questions:
  • PLEASEEEEEE HELPPPP!!!!!!!!
    7·1 answer
  • Round 736 to nearest ten
    13·2 answers
  • A length of string that is 22 feet long is being cut into pieces that are 1/3 foot long. how many pieces will there be
    6·1 answer
  • Options are: f(x) = 2x - 1 , f(x) = 2x - 7 , f(x) = x - 6 , f(x) = 1 - x , None of the choices are correct.
    10·1 answer
  • Which angle is an exterior angle? The choices got cut off in the pic
    6·1 answer
  • 1. What is -2y + 10 + 2y - 8 simplified?
    5·2 answers
  • Triangle ABC is similar to triangle FGH.
    8·1 answer
  • Describe how you find an upper bound and a lower bound for the zeros of a polynomial function
    15·1 answer
  • If the graph of function g is 6 units below the graph of function f, which could be function g?
    13·1 answer
  • What is the mode of this data set?<br><br> {7, 10, 12, 9, 12, 4, 13, 14}
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!