Answer:
Electrical energy. Jump to navigation Jump to search. Electrical energy is energy derived from electric potential energy or kinetic energy. When used loosely, electrical energy refers to energy that has been converted from electric potential energy
Explanation:
The power required to force the current of 4.13 A to flow through the conductor is 1927.43 watts
<h3>What is power? </h3>
This is defined as the rate in which energy is consumed. Electrical power is expressed mathematically as:
Power (P) = square current (I²)× resistancet (R)
P = I²R
<h3>How to determine the power</h3>
- Current (I) = 4.13 A
- Resistance (R) = 113 ohms
- Power (P) =?
P = I²R
P = 4.13² × 113
P = 1927.43 watts
Thus, the power required is 1927.43 watts
Learn more about electrical power:
brainly.com/question/64224
#SPJ1
A student creates interest in a visualization by contrasting the amount of light and dark. What color element is used?Grayscale
Mass of the block = 1.4 kg
Weight of the block = mg = 1.4 × 9.8 = 13.72 N
Normal force from the surface (N) = 13.72 N
Acceleration = 1.25 m/s^2
Let the coefficient of kinetic friction be μ
Friction force = μN
F(net) = ma
μmg = ma
μg = a
μ = 
μ = 
μ = 0.1275
Hence, the coefficient of kinetic friction is: μ = 0.1275
We can solve the problem by using Ohm's law, which states that an Ohmic conductor the following relationship holds:

where

is the potential difference applied to the resistor
I is the current flowing through it
R is the resistance
In our problem, I=4.00 A and

, so the potential difference is