1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Annette [7]
2 years ago
9

A 10.0-kg mass is placed on a 25.0o incline and friction keeps it from sliding. The coefficient of static friction in this case

is 0.580, and the coefficient of sliding friction is 0.520. The mass is given a shove causing it to slide down the incline. What is the frictional force while the mass is sliding
Physics
1 answer:
vovangra [49]2 years ago
5 0

The frictional force while the mass is sliding will be 46.2 N.

<h3>What is friction force?</h3>

Opposition forces on the surface cause heat loss during the motion of an object known as the friction force.

Given data:

m(mass)= 10.0-kg

Θ (Inclination angle)=25.0o

Coefficient of sliding friction,\rm \mu_k=0.520

Coefficient of static friction,\rm  \mu_s=0.520

The friction force, F=?

Resolve the force in the inclined plane;

\rm F=\mu_s mg cos25^0 \\\\ F=0.520 \times 10 \times 9.81 \times  cos 25 ^0 \\\\ F= 46.2 \ N

Hence, the frictional force while the mass is sliding will be 46.2 N.

To know more about friction force refer to the link;

brainly.com/question/1714663

#SPJ1

You might be interested in
If white light shines on an object and the red, orange, green, blue and purple light is absorbed. What color does your eye see?
Marrrta [24]
I think that would be yellow.

8 0
3 years ago
Read 2 more answers
What is the electric field at the point x=6.5 m? positive e-fields point to the right.?
Mademuasel [1]
6,5   6,4   6,3   6,2   6
if you know,1    
5 0
2 years ago
Dwayne ‘The Rock’ Johnson needs to escape from the fourth floor of a burning building (in a movie). He ties a rope around his wa
ZanzabumX [31]

Answer:

Final Speed of Dwayne 'The Rock' Johnson = 15.812 m/s

Explanation:

Let's start out with finding the force acting downwards because of the mass of 'The Rock':

Dwayne 'The Rock' Johnson: 118kg x 9.81m/s = 1157.58 N

Now the problem also states that the kinetic friction of the desk in this problem is 370 N

Since the pulley is smooth, the weight of Dwayne Johnson being transferred fully, and pulls the desk with a force of 1157.58 N. The frictional force of the desk is resisting this motion by a force of 370 N. Subtracting both forces we get the resultant force on the desk to be: 1157.58 - 370 = 787.58 N

Now lets use F = ma to calculate for the acceleration of the desk:

787.58 = 63 x acceleration

acceleration = 12.501 m/s

Finally, we can use the motion equation:

v^2 - u^2 = 2*a*s

here u = 0 m/s (since initial speed of the desk is 0)

a = 12.501 m/s

and s = 10 m

Solving this we get:

v^2 - 0 = 2 * 12.501 * 10

v = 15.812 m/s

Since the desk and Mr. Dwayne Johnson are connected by a taught rope, they are travelling at the same speed. Thus, Dwayne also travels at            15.812 m/s when the desk reaches the window.

5 0
3 years ago
An object initially at rest experiences an acceleration of 0.281 m/s2 to the South for a time of 5.44 seconds. It then increases
andre [41]

Answer:

12.0 meters

Explanation:

Given:

v₀ = 0 m/s

a₁ = 0.281 m/s²

t₁ = 5.44 s

a₂ = 1.43 m/s²

t₂ = 2.42 s

Find: x

First, find the velocity reached at the end of the first acceleration.

v = at + v₀

v = (0.281 m/s²) (5.44 s) + 0 m/s

v = 1.53 m/s

Next, find the position reached at the end of the first acceleration.

x = x₀ + v₀ t + ½ at²

x = 0 m + (0 m/s) (5.44 s) + ½ (0.281 m/s²) (5.44 s)²

x = 4.16 m

Finally, find the position reached at the end of the second acceleration.

x = x₀ + v₀ t + ½ at²

x = 4.16 m + (1.53 m/s) (2.42 s) + ½ (1.43 m/s²) (2.42 s)²

x = 12.0 m

5 0
3 years ago
A wave of wavelength 0.3 m travels 900 m in 3.0 s. Calculate its frequency.
zzz [600]

Answer:

1000 Hz

Explanation:

<em>The frequency would be 1000 Hz.</em>

The frequency, wavelength, and speed of a wave are related by the equation:

<em>v = fλ ..................(1)</em>

where v = speed of the wave, f = frequency of the wave, and λ = wavelength of the wave.

Making f the subject of the formula:

<em>f = v/λ.........................(2)</em>

Also, speed (v) = distance/time.

From the question, distance = 900 m, time = 3.0 s

Hence, v = 900/3.0 = 300 m/s

Substitute v = 300 and λ = 0.3  into equation (2):

f = 300/0.3 = 1000 Hz

6 0
3 years ago
Other questions:
  • You place a 500 g block of an unknown substance in an insulated container filled 2 kg of water. The block has an initial tempera
    12·1 answer
  • The rate of doing work is called?
    5·2 answers
  • A box is pushed across a horizontal table at constant speed. Of the forces on it, which pair do we know are equal in magnitude b
    14·1 answer
  • Plz help I don’t understand...
    8·1 answer
  • 1) ________ is a force that you can fell with your feet
    13·1 answer
  • An ion of an element has 30 protons 32 neutrons and 29 electrons what is that charge and how did you make that determination
    13·2 answers
  • What did Blaise Pascal discover, and how did he impact Physics?
    5·1 answer
  • Which of the following organisms has an adaptation that will allow it to survive in tundra biome? *
    5·1 answer
  • You drive 3.4 km in a straight line in a direction 6.9º east of north. If an alternate route to this same destination takes you
    8·1 answer
  • What is the frequency of a wave that has a period of .25 s
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!