the friction force provided by the brakes is 30000 N.
<h3>What is friction force?</h3>
Friction force is the force that opposes the motion between two bodies in contact.
To calculate the average friction force provided by the brakes, we apply the formula below.
Formula:
- K.E = F'd............. Equation 1
Where:
- K.E = Kinetic energy of the train
- F' = Friction force provided by the brakes
- d = distance
Make F' the subject of the equation
- F' = K.E/d............ Equation 2
From the question,
Given:
Substitute these values into equation 2
- F' = (8.1 ×10⁶)/270
- F' = 30000 N
Hence, the friction force provided by the brakes is 30000 N
Learn more about friction force here: brainly.com/question/13680415
Answer:
True
Explanation:
Given that Power whose unit is Watt equates to one joule of work per second. It implies that Power is directly proportional to the work done and inversely proportional to the time to do the work.
Therefore, in this case, the right answer to the question is that it is TRUE that the power is inversely proportional with time
One side of the mountain that has constant wind and rain blowing onto it, is more likely to catch what is falling than the other side leaving it dryer.
Newton's third law of motion states that for every action there is an equal and opposite reaction. The balloon travels in the opposite direction as the air escaping from it. So when gas is released from the balloon it pushes against the outside air and the outside air pushes back. As a result of this the rocket is propelled forward by the opposing force. This opposing force is thrust.
Hope this helps!
Can u plz mark me as brainliest? I really need it!
Answer:
<em>The net force acting on the object is 0 N</em>
Explanation:
<u>Newton's Second Law of Forces</u>
The net force acting on a body is proportional to the mass of the object and its acceleration.
The net force can be calculated as the sum of all the force vectors in each rectangular coordinate separately.
The image shows a free body diagram where four forces are acting: two in the vertical direction and two in the horizontal direction.
Note the forces in the vertical direction have the same magnitude and opposite directions, thus the net force is zero in that direction.
Since we are given the acceleration a =0, the net force is also 0, thus the horizontal forces should be in equilibrium.
The applied force of Fapp=10 N is compensated by the friction force whose value is, necessarily Fr=10 N in the opposite direction.
The net force acting on the object is 0 N