Answer:
w=3.05 rad/s or 29.88rpm
Explanation:
k = coefficient of friction = 0.3900
R = radius of the cylinder = 2.7m
V = linear speed of rotation of the cylinder
w = angular speed = V/R or to rewrite V = w*R
N = normal force to cylinder
N=


These must be balanced (the net force on the people will be 0) so set them equal to each other.





There are 2*pi radians in 1 revolution so:

So you need about 30 RPM to keep people from falling out the bottom
Given parameters:
Mass of object = 6.7kg
Velocity = 8m/s
Unknown parameter:
Kinetic energy = ?
Energy is defined as the ability to do work. There are two forms of energy;
Kinetic and potential energy.
Kinetic energy is the energy due to the motion of a body. Whereas, potential energy is the energy due to the position of a body usually at rest.
Kinetic energy is mathematically expressed as;
Kinetic energy = 
where m is the mass of the body
v is the velocity of the body
Since we have been given both mass and velocity, input the parameter to solve for the unknown;
Kinetic energy =
x 6.7 x 8² = 214.4J
So the kinetic energy of the body is 214.4J
Answer:
A. 
B. t = 50 s
Explanation:
A. The vectorial equation of the person who is getting closer to the other person is:

r: position vector
v: speed vector = 6m/s i (if you consider the motion as a horizontal motion)
Then, you replace and obtain:

B. The time is:

d: distance to the observer = 300m
v: speed of the person on the car = 6.00 m/s

Answer:
Answer: Kelvin ________________