Answer:
83.20 g of Na3PO4
Explanation:
1 mole of Na3PO4 contains 3 moles of Na+.
Mole of Na ion to be prepared = Molarity x volume
= 0.700 x 725/1000
= 0.5075 mole
If 1 mole of Na3PO4 contains 3 moles of Na ion, then 0.5075 Na ion will be contained in:
0.5075/3 x 1 = 0.1692 mole of Na3PO4
mole of Na3PO4 = mass/molar mass = 0.1692
Hence, mass of Na3PO4 = 0.1692 x molar mass
= 0.1692 x 163.94
= 83.20 g.
83.20 g of Na3PO4 will be needed.
Answer:
None are empirical formulas
Explanation:
All are actual compounds. An example of an empirical formula could be CH2O, the empirical formula for carbohydrates like glucose (C6H12O6).
Answer: The gas generated by two antacid tablets has a smaller volume.
Explanation:
Since the antiacid is the limiting reagent, we know that the more tablets there are, the more gas there will be.
This means that there will be more gas generated by the four antiacid tablets when compared to the two antiacid tablets, which gives us that the gas generated by the two antiacid tablets has a smaller volume.
a. t=0.553 s
b. vox(horizontal speed) = 3.62 m/s
<h3>Further explanation</h3>
Given
h = 1.5 m
x = 2 m
Required
a. time
b. vo=initial speed
Solution
Free fall motion
a. h = 1/2 gt²(vertical motion=h=voyt+1/2gt²⇒voy = 0)

t = √2h/g
t = √2.1.5/9.8
t=0.553 s
b. x=vox.t(horizontal motion)

vox=x/t
vox=2/0.553
vox=3.62 m/s
Double replacement because H and K are both switching