The pH of the solution is 2.54.
Explanation:
pH is the measure of acidity of the solution and Ka is the dissociation constant. Dissociation constant is the measure of concentration of hydrogen ion donated to the solution.
The solution of C₆H₂O₆ will get dissociated as C₆HO₆ and H+ ions. So the molar concentration of 0.1 M is present at the initial stage. Lets consider that the concentration of hydrogen ion released as x and the same amount of the base ion will also be released.
So the dissociation constant Kₐ can be written as the ratio of concentration of products to the concentration of reactants. As the concentration of reactants is given as 0.1 M and the concentration of products is considered as x for both hydrogen and base ion. Then the
![K_{a}=\frac{[H^{+}][HB] }{[reactant]}](https://tex.z-dn.net/?f=K_%7Ba%7D%3D%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5BHB%5D%20%7D%7B%5Breactant%5D%7D)
[HB] is the concentration of base.


Then
![pH = - log [x] = - log [ 0.283 * 10^{-2}]\\ \\pH = 2 + 0.548 = 2.54](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5Bx%5D%20%3D%20-%20log%20%5B%200.283%20%2A%2010%5E%7B-2%7D%5D%5C%5C%20%5C%5CpH%20%3D%202%20%2B%200.548%20%3D%202.54)
So the pH of the solution is 2.54.
Marie Curie discovered polonium and radium. Hope this helps:))) Please, mark Brainliest!
Answer:
Kinetic energy increases.
Explanation:
In a solid, molecules do not have much room to move. They are very slow moving, which means that kinetic energy is low. In a liquid, molecules have more room to move. They are able to move faster than a solid, which means that kinetic energy is low.
From greatest to lowest kinetic energy:
gas, liquid, solid
Answer : The correct option is, pressure.
Explanation :
The ideal gas equation is,

where,
P = pressure of the gas
V = volume of the gas
n = number of moles of gas
T = temperature of the gas
R = gas constant
The value of 'R' has several different values which are :




That means, the value of 'R' is different due the change in the pressure value and all the variables (temperature, volume and moles) are constant.
Hence, the correct option is, pressure.