Answer:
Step-by-step explanation:
Given: quadrilateral ABCD inscribed in a circle
To Prove:
1. ∠A and ∠C are supplementary.
2. ∠B and ∠D are supplementary.
Construction : Join AC and BD.
Proof: As, angle in same segment of circle are equal.Considering AB, BC, CD and DA as Segments, which are inside the circle,
∠1=∠2-----(1)
∠3=∠4-----(2)
∠5=∠6-------(3)
∠7=∠8------(4)
Also, sum of angles of quadrilateral is 360°.
⇒∠A+∠B+∠C+∠D=360°
→→∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=360°→→→using 1,2,3,and 4
→→→2∠1+2∠4+2∠6+2∠8=360°
→→→→2( ∠1 +∠6) +2(∠4+∠8)=360°⇒Dividing both sides by 2,
→→→∠B + ∠D=180°as, ∠1 +∠6=∠B , ∠4+∠8=∠B------(A)
As, ∠A+∠B+∠C+∠D=360°
∠A+∠C+180°=360°
∠A+∠C=360°-180°------Using A
∠A+∠C=180°
Hence proved.
credit: someone else
Answer:
The answer is 3/5
Step-by-step explanation:
try math caculators to help you with these questions thats where i go the solution from.
-Best of luck
Answer:
okay i will
Step-by-step explanation:
Answer:
-25
Step-by-step explanation:
(1) y = -2x²
(2) y = 2x² + k Subtract (1) from (2)
0 = 4x² + k Subtract 4x² from each side
k = -4x²
The parabolas are <em>symmetrical about the y-axis.</em>
Segment AB = 5, so x = +2.5 and x = +2.5.
k = -4(±2.5)² = -4 × 6.25 = -25