The molar mass of M is 0.225g/mol and the element M is Hydrogen
If a metal M combines with an oxygen element to form the oxide,
then the chemical reaction will be expressed as:

This shows that 4 moles of an unknown element M react with the oxygen element to produce the oxide
Given the following parameters
Mass of M = 0.890 grams
Mass of
= 0.956 grams
Get the molar mass of M:
Molar mass = Mass/number of moles
Molar mass = 0.890/4
Molar mass = 0.225g/mol
Hence the molar mass of M is 0.225g/mol and the element M is Hydrogen
Learn more here: brainly.com/question/6996520
Burning alcohol for fuel has been used throughout history. There are some alcohols that are the best ones to use as fuels because of their nature and can be synthesized chemicaly or biologicaly. Except, some of those alcohol also has a bad effect when burned for fuel as it would cause serious negative chemical effects when exposed to the human body such as blindness or death. Therefore, the best answer would be False.
Answer:
- <u><em>Option D. has a great [OH⁻]</em></u>
Explanation:
1) Both <em>acids</em> and <em>bases</em> ionize in aqueous solutions so they are able to <em>conduct electricity</em>.
The ions, being charged particles, when flow through the solution are charge carriers, then they conduct electricity.
So, the option A does not state a difference between a solution of a base and a solution of an acid.
2) Both acids and bases are able to cause an <em>indicator color change</em>.
The usufulness of the indicators is that they are able to change of color when the pH changes either from acid to basic or from basic to acid. There are different indicators because none is suitable for the whole range of pH, but the statement B is not how solutions of base and acids differ.
3) The model of Arrhenius for acids and bases states that an acid is a substance that ionizes in water releasing H⁺ ions (this is equivalent to H₃O⁺) and a base is a substance that releases OH⁻ ions in water. Then, acids have a greater concentration of H₃O⁺ (so option C is not true for a solution of a base) and bases have a greater concentraion of OH⁻, making the option D. true.