Current temperature = -2°C
Rise in temperature = 15°C
New temperature = (-2 + 15)°C = 13°C
c) Combine 2+3 to get 5. 100-(5x5) equals 100-25. 100-25 is 75. The answer is 75.
d) Combine 2+3 to get 5. Combine 1+4 to get 5, which is 25. The answer is 5.
g) Combine 4+6 to get 10. Combine 70+-6 to get 64. Take the root of 64, leaving you with 10-8. Combine 10 + -8 to get 2. The answer is 2.
h) Combine 5+4 to get 9. Take the root of 36, leaving you with 18 + 6. Combine 18 + 6 to get 24. The answer is 24.
5. [15 + 22 + 53] divided by [12 + 18] = [90] divided by [30] = 3 ribbons each.
6. (4 x 12) + (6 x 8) = 96 total.
Here's my interpretation: 4 whole km, plus zero tenths of a km, plus 3 hundredths of a km, plus 5 thousandths of a km.
<h2>
Answer:</h2><h3>
A. Domain </h3>
The domain of a function is the x-values that the graph applies to. This means that the domain is whatever x-values the graph crosses. All vertical parabolas (like the one pictured) have a domain of all reals. This is because any x-value could be plugged into the function and provide a y-value. while it may not seem like it, that graph will cover every single x-value in existence.
<h3>
B. Range</h3>
The range is similar to the domain but is for y-values. So, the range is whatever y-values the graph applies to and crosses. As you can see from the graph, there are no y-values above 1. This means the range is y≤1.
<h3>
C. Increasing Interval</h3>
A graph is increasing when the y-values are increasing. So, on the parent function of a parabola, the graph increases to the right and decreases to the left. However, this graph is inverted and shifted to the left, so the interval will also be flipped and shifted. In this case, the graph increases from -∞ to 2.
- Increasing Interval = [-∞, 2]
<h3>
D. Decreasing Interval</h3>
The decreasing interval is very similar to the increasing interval. This interval applies when the y-values are decreasing as the x-values increase. For a parabola, the increasing and decreasing intervals always meet at the x-value of the vertex, which is 2 on this graph. The y-values decrease during the interval 2 to ∞.
- Decreasing Interval = [2, ∞]
<h3>
E. Opening</h3>
The direction of a parabola is decided by the sign (+ or -) of the leading coefficient. Positive coefficients open up and negative opens down. As you can see from the graph, the sides of the parabola point downwards. This means that the leading coefficient must be negative.
<h3>
F. Min and Max</h3>
A parabola will always only have a min or a max, never both. If a graph opens up it has a min because there is one y-value which is the minimum possible y-value. Graphs that open downwards have a maximum because there is one y-value that is the largest possible. So, this graph has a maximum of 1 because that is the largest possible y-value.
Like all problems that involve images within the question, we should definitely try to draw this out. In the picture above, I have done this.
Now, we can see that this is just a simple proportion problem. For every 2.5 cm of height of the flower, we are 2 cm from the opening, or aperture. For every 20 cm of height, how far are we? We can set up the problem like this:
20 ............2.5
-------- = ---------
...x ............. 2
where x is the unknown distance to the aperture from the flower. Now, we just need to get x by itself. A typical way of solving something like this is by doing "butterfly multiplication" which is really just a shortcut haha. Anyway, I can rewrite that equation ^ as:
20×2 = 2.5 × x
Then, to solve for x, we would divide both sides by 2.5. (If you don't know why that is, please let me know and I'll elaborate).
We would then have:
20×2
------- = x
2.5
Which then simplifies to:
x = 16
Try using the same logic for your second question, and if you get stuck, I'd be happy to help! please let me know if any of this doesn't make sense. :)