1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Colt1911 [192]
3 years ago
13

I like to help in this problem: in the course of Juan 2/9 of the students are children of 13 years, 1/4 have 14 years and the re

st 15 years What kind of students do they have?
Mathematics
1 answer:
taurus [48]3 years ago
3 0
Rest are 19/36

it is 1 -(1/4) - (2/9)
= 1-9/36 - 8/36
= (36-9-8)/36
= 19/36.
You might be interested in
The conjugate is used in _____ of complex numbers.
creativ13 [48]
A. quadratic i’m pretty sure
8 0
3 years ago
Read 2 more answers
Is - 29/8 < , > or = - 3.62
andreyandreev [35.5K]
When -29/8 is written as a decimal it becomes
- 3.625
Which is equivalent to -3.63, rounded to the nearest hundredth.

Now from here we will be able to tell if they're < , > or =

So, -3.63 is > -3.62

ANSWER: -29/8 > -3.62
3 0
3 years ago
Two random samples are taken from private and public universities
kati45 [8]

Answer:

Step-by-step explanation:

For private Institutions,

n = 20

Mean, x1 = (43120 + 28190 + 34490 + 20893 + 42984 + 34750 + 44897 + 32198 + 18432 + 33981 + 29498 + 31980 + 22764 + 54190 + 37756 + 30129 + 33980 + 47909 + 32200 + 38120)/20 = 34623.05

Standard deviation = √(summation(x - mean)²/n

Summation(x - mean)² = (43120 - 34623.05)^2+ (28190 - 34623.05)^2 + (34490 - 34623.05)^2 + (20893 - 34623.05)^2 + (42984 - 34623.05)^2 + (34750 - 34623.05)^2 + (44897 - 34623.05)^2 + (32198 - 34623.05)^2 + (18432 - 34623.05)^2 + (33981 - 34623.05)^2 + (29498 - 34623.05)^2 + (31980 - 34623.05)^2 + (22764 - 34623.05)^2 + (54190 - 34623.05)^2 + (37756 - 34623.05)^2 + (30129 - 34623.05)^2 + (33980 - 34623.05)^2 + (47909 - 34623.05)^2 + (32200 - 34623.05)^2 + (38120 - 34623.05)^2 = 1527829234.95

Standard deviation = √(1527829234.95/20

s1 = 8740.22

For public Institutions,

n = 20

Mean, x2 = (25469 + 19450 + 18347 + 28560 + 32592 + 21871 + 24120 + 27450 + 29100 + 21870 + 22650 + 29143 + 25379 + 23450 + 23871 + 28745 + 30120 + 21190 + 21540 + 26346)/20 = 25063.15

Summation(x - mean)² = (25469 - 25063.15)^2+ (19450 - 25063.15)^2 + (18347 - 25063.15)^2 + (28560 - 25063.15)^2 + (32592 - 25063.15)^2 + (21871 - 25063.15)^2 + (24120 - 25063.15)^2 + (27450 - 25063.15)^2 + (29100 - 25063.15)^2 + (21870 - 25063.15)^2 + (22650 - 25063.15)^2 + (29143 - 25063.15)^2 + (25379 - 25063.15)^2 + (23450 - 25063.15)^2 + (23871 - 25063.15)^2 + (28745 - 25063.15)^2 + (30120 - 25063.15)^2 + (21190 - 25063.15)^2 + (21540 - 25063.15)^2 + (26346 - 25063.15)^2 = 1527829234.95

Standard deviation = √(283738188.55/20

s2 = 3766.55

This is a test of 2 independent groups. Let μ1 be the mean out-of-state tuition for private institutions and μ2 be the mean out-of-state tuition for public institutions.

The random variable is μ1 - μ2 = difference in the mean out-of-state tuition for private institutions and the mean out-of-state tuition for public institutions.

We would set up the hypothesis. The correct option is

-B. H0: μ1 = μ2 ; H1: μ1 > μ2

Since sample standard deviation is known, we would determine the test statistic by using the t test. The formula is

(x1 - x2)/√(s1²/n1 + s2²/n2)

t = (34623.05 - 25063.15)/√(8740.22²/20 + 3766.55²/20)

t = 9559.9/2128.12528473889

t = 4.49

The formula for determining the degree of freedom is

df = [s1²/n1 + s2²/n2]²/(1/n1 - 1)(s1²/n1)² + (1/n2 - 1)(s2²/n2)²

df = [8740.22²/20 + 3766.55²/20]²/[(1/20 - 1)(8740.22²/20)² + (1/20 - 1)(3766.55²/20)²] = 20511091253953.727/794331719568.7114

df = 26

We would determine the probability value from the t test calculator. It becomes

p value = 0.000065

Since alpha, 0.01 > than the p value, 0.000065, then we would reject the null hypothesis. Therefore, at 1% significance level, the mean out-of-state tuition for private institutions is statistically significantly higher than public institutions.

4 0
3 years ago
If the equation of a circle is (x + 5)2 + (y - 7)2 = 36, its radius is<br> 6<br> 0<br> 0
Pavel [41]

Answer:

6

Step-by-step explanation:

Radius of the given circle is 6 units.

Given equation of circle is:

{(x + 5)}^{2}  +  {(y - 7)}^{2}  = 36 \\  \: equating \: it \: with \\  {(x  -  h)}^{2}  +  {(y - k)}^{2}  =  {r}^{2}  \\ {r}^{2}   = 36 \\  \huge \red{ \boxed{r = 6 \: units}}

6 0
3 years ago
Find the value of x in the triangle shown below.<br> please help me
vaieri [72.5K]

Answer:

Final Answer: 59

Step-by-step explanation:

180- 62= 118

118 / 2= 59

so both angles would be 59

8 0
3 years ago
Other questions:
  • Which addition expression
    7·1 answer
  • Which expression is equivalent to 181 + |-71?<br> 0 -15<br> O-1<br> O 1<br> O 15
    15·1 answer
  • jareds dad built a square deck in his backyard. one side of the deck is 10 feet long.what is the perimeter of the deck?
    8·1 answer
  • the price of a notebook was $3.70 yesterday. today, the price fell to $3.45 . find the percentage decrease. round your answer to
    9·1 answer
  • The average distance from the sun to Venus is 67,237,910 miles. The average distance from the sun to earth is 92,955,807 miles
    15·2 answers
  • 10 minus 3 divided by 9
    11·1 answer
  • Eleanor is going to color the sides of a regular octagon. Two sides will be red, two sides will be yellow, two sides will be gre
    6·1 answer
  • 2
    6·1 answer
  • I have 3 1/2 bottles of maple syrup. I filled nine one quart bottles with syrup. How much syrup do I have left?
    6·1 answer
  • Determine the intercepts of the line. Do not round your answers. y − 6 = 4 ( x + 5 )
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!