The density does not change because it is still the same liquid as before
A green rat snake that lives in the grass and a brown rat snake that lives in the desert is a form of geographically separated species.
Explanation:
The habitats of the green rat snake and brown rat snake shows that they are geographically separated species.
The two rat snakes are different species because of their distinct habitat and morphology.
When two species get separated by habitat their breeding method changes either by morphology or breeding pattern.
Such species do not produce viable offspring.
Thus a green rat snake and a brown rat snake have very different habitats they are now two different species.
Such species are said to be reproductively isolated species. Two species having genetic divergence undergo natural selection to adapt to the environment.
Answer:
Gas chromatography is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance, or separating the different components of a mixture. In preparative chromatography, GC can be used to prepare pure compounds from a mixture
as chromatography is a term used to describe the group of analytical separation techniques used to analyze volatile substances in the gas phase. In gas chromatography, the components of a sample are dissolved in a solvent and vaporized in order to separate the analytes by distributing the sample between two phases: a stationary phase and a mobile phase. The mobile phase is a chemically inert gas that serves to carry the molecules of the analyte through the heated column. Gas chromatography is one of the sole forms of chromatography that does not utilize the mobile phase for interacting with the analyte. The stationary phase is either a solid adsorbant, termed gas-solid chromatography (GSC), or a liquid on an inert support, termed gas-liquid chromatography (GLC).
Introduction
In early 1900s, Gas chromatography (GC) was discovered by Mikhail Semenovich Tsvett as a separation technique to separate compounds. In organic chemistry, liquid-solid column chromatography is often used to separate organic compounds in solution. Among the various types of gas chromatography, gas-liquid chromatography is the method most commonly used to separate organic compounds. The combination of gas chromatography and mass spectrometry is an invaluable tool in the identification of molecules. A typical gas chromatograph consists of an injection port, a column, carrier gas flow control equipment, ovens and heaters for maintaining temperatures of the injection port and the column, an integrator chart recorder and a detector.
To separate the compounds in gas-liquid chromatography, a solution sample that contains organic compounds of interest is injected into the sample port where it will be vaporized. The vaporized samples that are injected are then carried by an inert gas, which is often used by helium or nitrogen. This inert gas goes through a glass column packed with silica that is coated with a liquid. Materials that are less soluble in the liquid will increase the result faster than the material with greater solubility.The purpose of this module is to provide a better understanding on its separation and measurement techniques and its application.
Explanation:
Purpose of gas chromatography
The main purpose of the gas chromatography technique is to separate the compounds that possess:
-
High volatility
- Low molecular weights
- Thermal stability
True is the correct answer