Answer:
177.1 L
Explanation:
The excersise can be solved, by the Ideal Gases Law.
P . V = n . R . T
In first step we need to determine the moles of gas:
We convert T° from, C° to K → 20°C + 273 = 293K
We convert P from mmHg to atm → 760 mmHg = 1atm
1Dm³ = 1L → 190L
We replace: 190 L . 1 atm = n . 0.082 . 293K
(190L.atm) / 0.082 . 293K = 7.91 moles.
We replace equation at STP conditions (1 atm and 273K)
V = (n . R .T) / P
V = (7.91 mol . 0.082 . 273K) / 1atm = 177.1 L
We can also make a rule of three:
At STP conditions 1 mol of gas occupies 22.4L
Then, 7.91 moles will be contained at (7.91 . 22.4) /1 = 177.1L
D.) It depends cuz no yeild is 100%..I mean side reactions also occur in most of the reactions. So mass of the reactant is not equal to the mass of the product. Hope it helps
Answer:
Mass Number
Explanation:
In nuclear physics, the sum of the numbers of protons and neutrons present in the nucleus of an atom.
Please vote brainliest!
Explanation:
Reaction equation for the given chemical reaction is as follows.

Equation for reaction quotient is as follows.
Q = 
= 
= 0.256
As, Q > K (= 0.12)
The effect on the partial pressure of
as equilibrium is achieved by using Q, is as follows.
- This means that there are too much products.
- Equilibrium will shift to the left towards reactants.
- More
is formed.
- Partial pressure of
increases.
Answer:
atomic particles
The nucleus (center) of the atom contains the protons (positively charged) and the neutrons (no charge). The outermost regions of the atom are called electron shells and contain the electrons (negatively charged).