Answer:
wind mill designers and hydroelectric dam builders.
Explanation:
paris agreement is all about promoting sustainable and renewable energy to combat global warming and climate change.
hope it helps:)
Answer:
The delivery of the paternal genome to the egg is a primary goal of fertilization. In preparation for this step, the nucleus of the developing spermatozoon undergoes extensive morphological and biochemical transformations during spermatogenesis to yield a tightly compacted sperm nucleus. These modifications are essentially reversed during fertilization. As a result, the incorporated sperm nucleus undergoes many steps in the egg cytoplasm as it develops into a male pronucleus. The sperm nucleus (1) loses its nuclear envelope, (2) undergoes nucleoprotein remodeling, (3) decondenses and increases in size, (4) becomes more spherical, (5) acquires a new nuclear envelope, and (6) becomes functionally competent to synthesize DNA and RNA. These changes are coordinate with meiotic processing of the maternal chromatin, and often result in behaviors asynchronous with the maternal chromatin. For example, in eggs fertilized during meiosis, the sperm nucleus decondenses while the maternal chromatin remains condensed. A model is presented that suggests some reasons why this puzzling behavior exists. Defects in any of the processes attending male pronuclear development often result in infertility. New assisted reproductive technologies have been developed that ensure delivery of the sperm nucleus to the egg cytoplasm so that a healthy embryo is produced. An emerging challenge is to further characterize the molecular mechanisms that control sperm nuclear transformations and link these to causes of human infertility. Further understanding of this basic process promises to revolutionize our understanding of the mystery of the beginning of new life.
Explanation:
The delivery of the paternal genome to the egg is a primary goal of fertilization. In preparation for this step, the nucleus of the developing spermatozoon undergoes extensive morphological and biochemical transformations during spermatogenesis to yield a tightly compacted sperm nucleus. These modifications are essentially reversed during fertilization. As a result, the incorporated sperm nucleus undergoes many steps in the egg cytoplasm as it develops into a male pronucleus.
Answer:
Chemical energy
<h2>
Which form of energy does our food contain? </h2>
Yes, food serves as a basic source of the nutrients and energy needed to maintain and grow the body. Food contains what is referred to as "chemical energy" in terms of energy. This is nothing more than the bonds between the atoms that make up the specific food item, which the body may break down to release energy that it can use to create, repair, and ensure appropriate bodily function. This chemical energy is ultimately sunshine energy, which plants have the extraordinary capacity to use and store in the chemical compounds they produce, mostly in their leaves, using sunlight, water, and atmospheric carbon dioxide. Food does indeed contain energy, but that energy ultimately originates from the sun. Since people have known this for thousands of years, many civilizations revere the sun, along with water, air, and of course fire, as the source of life. For the body to function, energy is required by the muscles, brain, heart, and liver. The food we eat provides us with this energy. Our bodies break down the food we consume by combining it in the stomach with fluids (acids and enzymes). The carbohydrate (sugars and starches) in food is broken down into another form of sugar, termed glucose, during digestion in the stomach. The glucose is absorbed by the stomach and small intestines before being released into the circulation. Upon entering the bloodstream, glucose can either be utilized right away for energy or stored for later use. But in order to utilize or store glucose for energy, our systems need insulin. When insulin is absent, glucose remains in the circulation, which raises blood sugar levels. The glucose is burnt inside of your cells to create heat and adenosine triphosphate (ATP), a chemical that stores and releases energy as the cell requires. Either oxygen is present throughout the process of converting glucose into energy, or it is not. In the mitochondria, which are microscopic structures located in the gel-like fluid that fills every cell, glucose is transformed into energy using oxygen. This conversion results in waste products including water and carbon dioxide as well as energy (ATP, heat). Without oxygen, red blood cells convert glucose into energy because they lack mitochondria. ATP, heat, and lactic acid are produced as a result. Muscle cells also use glucose as a source of energy. Muscle cells are, well, double-jointed when it comes to converting glucose into energy. They can metabolize glucose with oxygen because they contain mitochondria. However, if the muscle cell's oxygen level plummets, the cells can simply convert glucose into energy on their own without it. When you have been working out so hard that you are physically out of breath, this is most likely to occur.
#SPJ2
Answer:
possible genotypes are - Rr Rr Rr Rr
Possible phenotypes - remember that R is dominant therefore all of the seeds with be round
Explanation: