Answer:
168.4 mL
Explanation:
Data Given
initial volume V1 of gas in balloon = 100 mL
initial pressure P1 of gas in balloon = 3.2 atm
final pressure P2 of gas in balloon = 1.9 atm
final volume V2 of gas in balloon = ?
Solution:
This problem will be solved by using Boyle's law equation at constant Temperature.
The formula used
P1V1 = P2V2
As we have to find out Volume, so rearrange the above equation
V2 = P1V1 / P2
Put value from the data given
V2 = 100 mL x 3.2 atm / 1.9 atm
V2 = 168.4 mL
So the final Volume of gas in baloon = 168.4 mL
Answer:
Nickel
Explanation:
To find what metal it is, first find the density
Density formula: mass ÷ volume
so.. 26.7 ÷ 3 = 8.9 g/cm^3
Nickel has a density of 8.9 g/cm^3 so nickel is the metal that is present in the ring
It’s 34 I had this question
<h3>
Answer:</h3>
2 M
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Unit 0</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<u>Aqueous Solutions</u>
- Molarity = moles of solute / liters of solution
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
36.7 g CaF₂
300 mL H₂O
<u>Step 2: Identify Conversions</u>
Molar Mass of Ca - 40.08 g/mol
Molar Mass of F - 19.00 g/mol
Molar Mass of CaF₂ - 40.08 + 2(19.00) = 78.08 g/mol
1000 mL = 1 L
<u>Step 3: Convert</u>
<em>Solute</em>
- Set up:

- Multiply:

<em>Solution</em>
- Set up:

- Multiply:

<u>Step 4: Find Molarity</u>
- Substitute [M]:

- Divide:

<u>Step 5: Check</u>
<em>Follow sig fig rules and round.</em> <em>We are given 1 sig fig as our lowest.</em>
1.56677 M ≈ 2 M
The exact molecular mass for butane (C4H10) is
12.0096*4+1.0079*10=58.1174 which is 58.1 to 3 significant figures.
Proportion of carbon in the compound
12.0096*4: 58.1174
=>
48.0384 : 58.1174
The mass of carbon in 2.50 grams of butane can be obtained by proportion, namely
Mass of carbon
= 2.50 * (48.0384/58.1174)
= 2.0664
= 2.07 g (approximated to 3 significant figures)