Given: 36.7 grams of CaF2 is added to 300 mL water. Find molarity?
1 answer:
<h3>
Answer:</h3>
2 M
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Unit 0</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<u>Aqueous Solutions</u>
- Molarity = moles of solute / liters of solution
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
36.7 g CaF₂
300 mL H₂O
<u>Step 2: Identify Conversions</u>
Molar Mass of Ca - 40.08 g/mol
Molar Mass of F - 19.00 g/mol
Molar Mass of CaF₂ - 40.08 + 2(19.00) = 78.08 g/mol
1000 mL = 1 L
<u>Step 3: Convert</u>
<em>Solute</em>
- Set up:

- Multiply:

<em>Solution</em>
- Set up:

- Multiply:

<u>Step 4: Find Molarity</u>
- Substitute [M]:

- Divide:

<u>Step 5: Check</u>
<em>Follow sig fig rules and round.</em> <em>We are given 1 sig fig as our lowest.</em>
1.56677 M ≈ 2 M
You might be interested in
I believe your answer is B.
Answer:
Va = (MbVb)/Ma
Explanation:
Divide both sides by Ma and voila!
Answer:

Explanation:
We will need a balanced chemical equation with masses and molar masses, so, let's gather all the information in one place.
M_r: 32 60
CH₃OH + CO ⟶ CH₃COOH
m/g: 160
(a) Moles of CH₃OH

(b) Moles of CH₃COOH

(c) Mass of CH₃COOH

Phosgene its a my friend used in the war
Answer:
V/V% = 8.2%
Explanation:
Given data:
Volume of methanol = 37.5 mL
Volume of solution = 456 mL
V/V% = ?
Solution:
V/V% = [volume of solute / volume of solution ]×100
V/V% = 37.5 mL / 456 mL × 100
V/V% = 0.08× 100
V/V% = 8.2%