Ok, so remember that the derivitive of the position function is the velocty function and the derivitive of the velocity function is the accceleration function
x(t) is the positon function
so just take the derivitive of 3t/π +cos(t) twice
first derivitive is 3/π-sin(t)
2nd derivitive is -cos(t)
a(t)=-cos(t)
on the interval [π/2,5π/2) where does -cos(t)=1? or where does cos(t)=-1?
at t=π
so now plug that in for t in the position function to find the position at time t=π
x(π)=3(π)/π+cos(π)
x(π)=3-1
x(π)=2
so the position is 2
ok, that graph is the first derivitive of f(x)
the function f(x) is increaseing when the slope is positive
it is concave up when the 2nd derivitive of f(x) is positive
we are given f'(x), the derivitive of f(x)
we want to find where it is increasing AND where it is concave down
it is increasing when the derivitive is positive, so just find where the graph is positive (that's about from -2 to 4)
it is concave down when the second derivitive (aka derivitive of the first derivitive aka slope of the first derivitive) is negative
where is the slope negative?
from about x=0 to x=2
and that's in our range of being increasing
so the interval is (0,2)
Answer:
- 3/8 in/ft
- 1/32 . . . (pure number, no units)
Step-by-step explanation:
The ratio can be expressed directly as ...
... (6 in)/(16 ft) = 3/8 in/ft
This can be read or used in different ways:
Or, the units can be made compatible and the ratio expressed as a pure number.
... (1/2 ft)/(16 ft) = (1/32) ft/ft = 1/32
This means whatever measurement is made on the model, the actual vehicle measurement is 32 times that.
Answer:
<h2>31 tickets</h2>
Step-by-step explanation:
Step one:
number of tickets sold
monday=14
tuesday=10
the number of tickets sold for Monday and Tuesday combined is
14+10= 24
step two:
we want to find how many tickets make 30%
so 30/100*24
0.3*24
=7.2 tickets,
Approximately 7 ticket
Therefore the total ticket is
14+10+7
=31 tickets