When
, we have


and of course 3 | 6. ("3 divides 6", in case the notation is unfamiliar.)
Suppose this is true for
, that

Now for
, we have

so we know the left side is at least divisible by
by our assumption.
It remains to show that

which is easily done with Fermat's little theorem. It says

where
is prime and
is any integer. Then for any positive integer
,

Furthermore,

which goes all the way down to

So, we find that

QED
Answer:
We need a sample size of least 119
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
The margin of error is:

95% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
Sample size needed
At least n, in which n is found when 
We don't know the proportion, so we use
, which is when we would need the largest sample size.






Rounding up
We need a sample size of least 119
Answer:
1
Step-by-step explanation:
im not sure but I think it's 1