Answer:
A. -45
Step-by-step explanation:
multiplying a positive an a negative number gives out a negative result
so when we multiple 9 with -5 the result is -45
Angle D is 180° -75° -45° = 60°. Drawing altitude MX to segment DN divides the triangle into ΔMDX, a 30°-60°-90° triangle, and ΔMNX, a 45°-45°-90° triangle. We know the side ratios of such triangles (shortest-to-longest) are ...
... 30-60-90: 1 : √3 : 2
... 45-45-90: 1 : 1 : √2
The long side of ΔMDX is 10√3, so the other two sides are
... MX = MD(√3/2) = 15
... DX = MD(1/2) = 5√3
The short side of ΔMNX is MX = 15, so the other two sides are
... NX = MX(1) = 15
... MN = MX(√2) = 15√2
Then the perimeter of ΔDMN is ...
... P = DM + MN + NX + XD
... P = 10√3 +15√2 + 15 + 5√3
... P = 15√3 +15√2 +15 . . . . perimeter of ΔDMN
Answer:
Choice B is correct
Step-by-step explanation:
The given radical division can be expressed in the following form;

Using the properties of radical division, the expression can be expressed in the following form;

Simplifying further yields;

Choice B is thus the correct alternative
Yup it is definently confsing
A circle is a geometric object that has symmetry about the vertical and horizontal lines through its center. When the circle is a unit circle (of radius 1) centered on the origin of the x-y plane, points in the first quadrant can be reflected across the x- or y- axes (or both) to give points in the other quadrants.
That is, if the terminal ray of an angle intersects the unit circle in the first quadrant, the point of intersection reflected across the y-axis will give an angle whose measure is the original angle subtracted from the measure of a half-circle. Since the measure of a half-circle is π radians, the reflection of the angle π/6 radians will be the angle π-π/6 = 5π/6 radians.
Reflecting 1st-quadrant angles across the origin into the third quadrant adds π radians to their measure. Reflecting them across the x-axis into the 4th quadrant gives an angle whose measure is 2π radians minus the measure of the original angle.