Answer:
AH = 1 or 4
CH = 4 or 1
Step-by-step explanation:
An altitude divides a right triangle into similar triangles. That means the sides are in proportion, so ...
AH/BH = BH/CH
AH·CH = BH²
The problem statement tells us AH + CH = AC = 5, so we can write
AH·(5 -AH) = BH²
AH·(5 -AH) = 2² = 4
This gives us the quadratic ...
AH² -5AH +4 = 0 . . . . in standard form
(AH -4)(AH -1) = 0 . . . . factored
This equation has solutions AH = 1 or 4, the values of AH that make the factors be zero. Then CH = 5-AH = 4 or 1.
6² ÷ 2 × 3 + 4
=36/2(3)+4
=(18)(3)+4
=54+4
=58
To solve this you need to know Pythagorean theorem.
First, EG is 24, so the halfway points are 12. Knowing Pythagorean triples, you can use 5,12,13 and 12,16,20.
DF = 5+16
DF = 21
If you don't know Pythagorean triples, I have worked it out on the image attached.
Answer:
18.1437
Step-by-step explanation:
divide the mass value by 2.205
Since EF=FG, you can set 6x - 10 = to 3x + 11

Then add like terms

so,

Now you can divide by 3 to get

:)
then put it back into


so,