Find the area of a triangle whose base is x^2 + 2x + 4 and whose height is 2x^2 + 2x + 6
2 answers:
Answer: The area is: "(x² + x + 3) (x² + 2x + 4) " square units ; or, write as :_____________________________________________________ " x⁴ + 3x³ + 9x² + 10x + 12 " square units ._____________________________________________________ Explanation: _____________________________________ Area of a triangle = ½ * (base length) * (height) ; or: A = ½ * b * h ; Plug in values given: A = ½ * (x² + 2x + 4) * (2x² + 2x + 6) ; ↔ A = ½ * (2x² + 2x + 6) * (x² + 2x + 4) ;_______________________________________ Note: ½ * (2x² + 2x + 6) = (2x² + 2x + 6) / 2 = x² + x + 3 ;_________________________________________ Rewrite:_________________________________________ A = "(x² + x + 3) (x² + 2x + 4)" square units ; or expand further and solve:__________________________________________ x² * x² = x⁽²⁺²⁾ = x⁴ ;_____________________ x² * 2x = 2x³ ;____________________ x² * 4 = 4x² ;_____________________ x * x² = x¹ * x² = x⁽¹⁺²⁾ = x³ ;______________ x * 2x = 2x² ;_____________ x * 4 = 4x ;_____________ 3 * x² = 3x² ;_____________ 3 * 2x = 6x ;__________ 3 * 4 = 12__________ So, we have: x⁴ + 2x³ + 4x² + x³ + 2x² + 4x + 3x² + 6x + 12 ; → Combine the "like terms" ;_______________________________ +2x³ + x³ = 3x³ +4x² + 2x² + 3x² = 9x² +4x + 6x = 10x______________________________________________ And we have: " x⁴ + 3x³ + 9x² + 10x + 12 " square units ._________________________________________________
A = 1/2 (base * height)
A = 1/2 [(x^2 + 2x + 4)*(<span>2x^2 + 2x + 6)]</span>
You might be interested in
Answer:
33.3333
Step-by-step explanation:
128 inches bevy se you have to find the areas of each and then add so it is 48 + 80 =128
D there is always a 1 infront of a variable but since x2 has the largest degree it gives it priority over the others so what ever numbe in front of it is the leading coefficient
Answer:
15
Step-by-step explanation:
135 divided by 9 = 15