Answer:
a convex polygon is a simple polygon in which each of the interior angles measure less than 180-degrees
Answer: β ≠ ±1
Step-by-step explanation: For a system of equations to have an unique solution, its determinant must be different from 0: det |A| ≠ 0. So,
det
≠ 0
Determinant of a 3x3 matrix is calculated by:
det ![\left[\begin{array}{ccc}1&\beta&1-\beta\\2&2&0\\2-2\beta&4&0\end{array}\right]\left[\begin{array}{ccc}1&\beta\\2&2\\2-2\beta&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26%5Cbeta%261-%5Cbeta%5C%5C2%262%260%5C%5C2-2%5Cbeta%264%260%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26%5Cbeta%5C%5C2%262%5C%5C2-2%5Cbeta%264%5Cend%7Barray%7D%5Cright%5D)
![8(1-\beta)-[2(2-2\beta)(1-\beta)]](https://tex.z-dn.net/?f=8%281-%5Cbeta%29-%5B2%282-2%5Cbeta%29%281-%5Cbeta%29%5D)




β ≠ ±1
For the system to have only one solution, β ≠ 1 or β ≠ -1.
Answer:
90
Step-by-step explanation:
= 6(12+3)
= 6*12 + 6*3
= 72 + 18
= 90
<h2>(1)</h2><h2> =(a+b)(3c-d)</h2><h2> =a(3c-d)+b(3c-d)</h2><h2> =3ac-ad+3bc-bd</h2>
<h2>(2)</h2><h2> =(a-b)(c+2d)</h2><h2> =a(c+2d)-b(c+2d)</h2><h2> =ac+2ad-bc-2bd</h2>
<h2>(3)</h2><h2> =(a-b)(c-2d)</h2><h2> =a(c-2d)-b(c-2d)</h2><h2> =ac-2ad-bc+2bd</h2>
<h2>(4)</h2><h2> =(2a+b)(c-3d)</h2><h2> =2a(c-3d)+b(c-3d)</h2><h2> =2ac-6ad+bc-3bd</h2>
Answer:
14/24 And 21/36
Step-by-step explanation:
Just multiply the fractions by any number. In this case 2 and 3.