We have been given two points.
and
. We are asked to find the point B such that it divides line segment AC so that the ratio of AB to BC is 4:1.
We will use segment formula to solve our given problem.
When a point P divides segment any segment internally in the ratio
, then coordinates of point P are:
![[\right x=\frac{mx_2+nx_1}{m+n},y=\frac{my_2+ny_1}{m+n}\left]](https://tex.z-dn.net/?f=%5B%5Cright%20x%3D%5Cfrac%7Bmx_2%2Bnx_1%7D%7Bm%2Bn%7D%2Cy%3D%5Cfrac%7Bmy_2%2Bny_1%7D%7Bm%2Bn%7D%5Cleft%5D)
and
.

Upon substituting our given information in above formula, we will get:
![[\right x=\frac{4(3)+1(3)}{4+1},y=\frac{4(9)+1(4)}{4+1}\left]](https://tex.z-dn.net/?f=%5B%5Cright%20x%3D%5Cfrac%7B4%283%29%2B1%283%29%7D%7B4%2B1%7D%2Cy%3D%5Cfrac%7B4%289%29%2B1%284%29%7D%7B4%2B1%7D%5Cleft%5D)
![[\right x=\frac{12+3}{5},y=\frac{36+4}{5}\left]](https://tex.z-dn.net/?f=%5B%5Cright%20x%3D%5Cfrac%7B12%2B3%7D%7B5%7D%2Cy%3D%5Cfrac%7B36%2B4%7D%7B5%7D%5Cleft%5D)
![[\right x=\frac{15}{5},y=\frac{40}{5}\left]](https://tex.z-dn.net/?f=%5B%5Cright%20x%3D%5Cfrac%7B15%7D%7B5%7D%2Cy%3D%5Cfrac%7B40%7D%7B5%7D%5Cleft%5D)
![[\right x=3,y=8\left]](https://tex.z-dn.net/?f=%5B%5Cright%20x%3D3%2Cy%3D8%5Cleft%5D)
Therefore, the coordinates of point B would be
.
The second option. 10
Hope this helps<3
[1]
A1 = (h (a + b)) / 2
A1 = (21 (17 + 32)) / 2
A1 = (21 x 49) / 2
A1 = 1,029 / 2
A1 = 514.5 mm²
[2]
A2 = (b x h) / 2
A2 = (11 x 9) / 2
A2 = 99 / 2
A2 = 49.5 mm²
[3]
The area of the shaded region =
A1 - A2 =
514.5 mm² - 49.5 mm² =
465 mm²
The answer is 465 mm².
Answer:
x - 7 = 65
(x is rhonda's score)
Step-by-step explanation:
Answer:
17.2
Step-by-step explanation:
8 to the power of 2 is 64
19 to the power of 2 is 361
361 - 64 is 297
Square root of 297 is 17.2