1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irga5000 [103]
3 years ago
13

Name the variable in this experiment

Engineering
1 answer:
taurus [48]3 years ago
7 0
You have to show the story or experiment so we know
You might be interested in
Air exits a compressor operating at steady-state, steady-flow conditions at 150 oC, 825 kPa, with a velocity of 10 m/s through a
ioda

Answer:

a) Qe = 0.01963 m^3 / s , mass flow rate m^ = 0.1334 kg/s

b) Inlet cross sectional area = Ai = 0.11217 m^2 , Qi = 0.11217 m^3 / s    

Explanation:

Given:-

- The compressor exit conditions are given as follows:

                  Pressure ( Pe ) = 825 KPa

                  Temperature ( Te ) = 150°C

                  Velocity ( Ve ) = 10 m/s

                  Diameter ( de ) = 5.0 cm

Solution:-

- Define inlet parameters:

                  Pressure = Pi = 100 KPa

                  Temperature = Ti = 20.0

                  Velocity = Vi = 1.0 m/s

                  Area = Ai

- From definition the volumetric flow rate at outlet ( Qe ) is determined by the following equation:

                   Qe = Ae*Ve

Where,

           Ae: The exit cross sectional area

                   Ae = π*de^2 / 4

Therefore,

                  Qe = Ve*π*de^2 / 4

                  Qe = 10*π*0.05^2 / 4

                  Qe = 0.01963 m^3 / s

 

- To determine the mass flow rate ( m^ ) through the compressor we need to determine the density of air at exit using exit conditions.

- We will assume air to be an ideal gas. Thus using the ideal gas state equation we have:

                   Pe / ρe = R*Te  

Where,

           Te: The absolute temperature at exit

           ρe: The density of air at exit

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρe = Pe / (R*Te)

                ρe = 825 / (0.287*( 273 + 150 ) )

                ρe = 6.79566 kg/m^3

- The mass flow rate ( m^ ) is given:

               m^ = ρe*Qe

                     = ( 6.79566 )*( 0.01963 )

                     = 0.1334 kg/s

- We will use the "continuity equation " for steady state flow inside the compressor i.e mass flow rate remains constant:

              m^ = ρe*Ae*Ve = ρi*Ai*Vi

- Density of air at inlet using inlet conditions. Again, using the ideal gas state equation:

               Pi / ρi = R*Ti  

Where,

           Ti: The absolute temperature at inlet

           ρi: The density of air at inlet

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρi = Pi / (R*Ti)

                ρi = 100 / (0.287*( 273 + 20 ) )

                ρi = 1.18918 kg/m^3

Using continuity expression:

               Ai = m^ / ρi*Vi

               Ai = 0.1334 / 1.18918*1

               Ai = 0.11217 m^2          

- From definition the volumetric flow rate at inlet ( Qi ) is determined by the following equation:

                   Qi = Ai*Vi

Where,

           Ai: The inlet cross sectional area

                  Qi = 0.11217*1

                  Qi = 0.11217 m^3 / s    

- The equations that will help us with required plots are:

Inlet cross section area ( Ai )

                Ai = m^ / ρi*Vi  

                Ai = 0.1334 / 1.18918*Vi

                Ai ( V ) = 0.11217 / Vi   .... Eq 1

Inlet flow rate ( Qi ):

                Qi = 0.11217 m^3 / s ... constant  Eq 2

               

6 0
3 years ago
For laminar flow over a hot flat plate, the local heat transfer coefficient decreases with distance because (select all that are
avanturin [10]

Answer:

hello the answer options are missing here are the options

A)The thickness of the heated region near the plate is increasing

B)The velocities near the plates are increasing

C)The fluid temperature near the plate are increasing

ANSWER : all of the above

Explanation:

Laminar flow  is the flow of a type of fluid across the surface of an object following regular paths and it is unlike a turbulent flow which flows in irregular paths (encountering fluctuations)

For laminar flow over a hot flat plate, the local heat transfer coefficient decreases with distance because :

  • The thickness of the heated region near the plate is increasing
  • The velocities near the plates are increasing
  • The fluid temperature near the plate are increasing
5 0
3 years ago
Refrigerant-134a at 400 psia has a specific volume of 0.1144 ft3/lbm. Determine the temperature of the refrigerant based on (a)
vekshin1

Answer:

a) Using Ideal gas Equation, T = 434.98°R = 435°R

b) Using Van Der Waal's Equation, T = 637.32°R = 637°R

c) T obtained from the refrigerant tables at P = 400 psia and v = 0.1144 ft³/lbm is T = 559.67°R = 560°R

Explanation:

a) Ideal gas Equation

PV = mRT

T = PV/mR

P = pressure = 400 psia

V/m = specific volume = 0.1144 ft³/lbm

R = gas constant = 0.1052 psia.ft³/lbm.°R

T = 400 × 0.1144/0.1052 = 434.98 °R

b) Van Der Waal's Equation

T = (1/R) (P + (a/v²)) (v - b)

a = Van Der Waal's constant = (27R²(T꜀ᵣ)²)/(64P꜀ᵣ)

R = 0.1052 psia.ft³/lbm.°R

T꜀ᵣ = critical temperature for refrigerant-134a (from the refrigerant tables) = 673.6°R

P꜀ᵣ = critical pressure for refrigerant-134a (from the refrigerant tables) = 588.7 psia

a = (27 × 0.1052² × 673.6²)/(64 × 588.7)

a = 3.596 ft⁶.psia/lbm²

b = (RT꜀ᵣ)/8P꜀ᵣ

b = (0.1052 × 673.6)/(8 × 588.7) = 0.01504 ft³/lbm

T = (1/0.1052) (400 + (3.596/0.1144²) (0.1144 - 0.01504) = 637.32°R

c) The temperature for the refrigerant-134a as obtained from the refrigerant tables at P = 400 psia and v = 0.1144 ft³/lbm is

T = 100°F = 559.67°R

7 0
4 years ago
Your department's laser printer recently began printing a vertical black line near the edge of every printed page. What should y
WINSTONCH [101]

Answer:

Replace the toner cartridge

Explanation:

solution

when laser printer  print black color liner vertical line print it is  very frustrating  that condition  nearly empty toner cartridge

but first we clean the corona wire for that color line

and Reinstall the toner cartridges after Shake the toner cartridge side to side

if problem not solve than Clean the drum unit

and finally if not solve change the toner cartridge

so as that our problem will be resolve

5 0
3 years ago
The explosion of a hydrogen bomb can be approximated by a fireball with a temperature of 7200 K, according to a report published
Iteru [2.4K]

Answer:

a

The rate of radiation of the energy is  E_r = 1.523747635*10^9 W/m^2

b

The irradiation is  G =46.177\ kW/m^2

c

The amount of energy absorbed is E_B = 461.772 KJ

d

The oak Tree would catch fire because the temperature of the blast(7200 K) is higher than the flammability limit (650 K) of the oak tree and secondly the thickness is very small

Explanation:

  From the question we are told that

        The  temperature is  T =  7200K

        The diameter of the ball is  d = 1.5 km = 1.5 *1000 = 1500m

       Hence the radius  == \frac{1500}{2} = 750m

 The total energy radiated can be mathematically represented as

                         E = \sigma A T^4

Where \sigma is the Stefan-Boltzmann constant \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 5.67*10^{-8} W \ \cdot m^{-2} K^{-4}

            A is the area of a sphere  = \pi d^2  = 3.142 * 1500^2 = 7.069500 *10 ^6\ m^2

 Substituting values we have

                    E = 5,67*10^{-8} * 7.069500*10^6 * 7200^4

                        =1.077*10^{15} W

Now the state of the energy is mathematically represented as

                           Rate  \ of \ energy \ radiation (E_r)= \frac{E}{A} = \sigma T^4

                                                            = 5.67*10^{-8} * 7200^2

                                                            = 1.523747635*10^9 W/m^2

A sketch illustrating the b part of the question is shown on the first uploaded image

     looking at the height at which the blast occurs(16km) as compared to the height of the wall we notice that the height of the wall is negligibly small

      from the diagram x can be calculated as follows

                      x = \sqrt{40^2 + 16^2}

                        = 43.0813 Km

This value of x represents the radius of the blast(assuming it is spherical ) when it is at that wall

Now the irradiation G is mathematically represented as

                              G = \frac{E}{4 \pi r^2}

Here r = 43.0813 Km = 43.0813 × 1000 = 43081.3 m

                            G= \frac{1.077*10^15}{4 \pi (431081.3^2)}

                                G =46.177\ kW/m^2

Generally the amount of energy absorbed can be mathematically represented as

                            Amount \ of \ energy \ absorbed \ (E_B ) = G * t

Where t is the time taken

       Therefore     E_B = 46.177 *10 = 461.77 KJ

       

                         

                       

             

   

6 0
3 years ago
Other questions:
  • A freezer is maintained at 20°F by removing heat from it at a rate of 75 Btu/min. The power input to the freezer is 0.70 hp, and
    12·1 answer
  • // Program decides tuition based on several criteria: // 1 - 12 credit hours @ $150 per credit hour // 13 - 18 credit hours, fla
    7·1 answer
  • Which type of design does not need special care for the placement of dimensions?
    5·1 answer
  • A plate (A-C) is connected to steelflat bars by pinsat A and B. Member A-E consists of two 6mm by 25mm parallel flat bars. At C,
    10·1 answer
  • A generator is to be driven by a small Pelton wheel with a head of 91.5m at inlet to the nozzle and discharge of 0.04m^3/s. The
    6·1 answer
  • A turntable A is built into a stage for use in a theatrical production. It is observed during a rehearsal that a trunk B starts
    5·1 answer
  • Obese children develop high blood pressure, heart disease, and Type II diabetes at a younger age than children of a healthy weig
    9·2 answers
  • Responding to the campaign of 4 classes, 7A, 7B, 7C, 7D contributed the amount of support proportional to the numbers 8,6;7;5 kn
    5·1 answer
  • Concerning the storage battery, what category of the primary sources is voltage produced?​
    13·1 answer
  • Bebe receives a letter from the FBI stating that she is wanted for a crime. The letter says she must send her Social Security nu
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!