1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stira [4]
3 years ago
12

Air exits a compressor operating at steady-state, steady-flow conditions at 150 oC, 825 kPa, with a velocity of 10 m/s through a

circular pipe of 5.0 cm diameter.
a. Determine the outlet volumetric flow rate and the mass flow rate of the air.
b. If the air enters the compressor through an inlet at 20.0 oC and 100 kPa and a velocity of 1.0 m/s, determine the volumetric flow rate of the air entering the compressor and the required cross-sectional area of the inlet.
c. Using your equations, plot the inlet volumetric flow rate and the inlet cross-sectional area as the inlet air velocity varies between 0.25 m/s and 10.0 m/s.
Engineering
1 answer:
ioda3 years ago
6 0

Answer:

a) Qe = 0.01963 m^3 / s , mass flow rate m^ = 0.1334 kg/s

b) Inlet cross sectional area = Ai = 0.11217 m^2 , Qi = 0.11217 m^3 / s    

Explanation:

Given:-

- The compressor exit conditions are given as follows:

                  Pressure ( Pe ) = 825 KPa

                  Temperature ( Te ) = 150°C

                  Velocity ( Ve ) = 10 m/s

                  Diameter ( de ) = 5.0 cm

Solution:-

- Define inlet parameters:

                  Pressure = Pi = 100 KPa

                  Temperature = Ti = 20.0

                  Velocity = Vi = 1.0 m/s

                  Area = Ai

- From definition the volumetric flow rate at outlet ( Qe ) is determined by the following equation:

                   Qe = Ae*Ve

Where,

           Ae: The exit cross sectional area

                   Ae = π*de^2 / 4

Therefore,

                  Qe = Ve*π*de^2 / 4

                  Qe = 10*π*0.05^2 / 4

                  Qe = 0.01963 m^3 / s

 

- To determine the mass flow rate ( m^ ) through the compressor we need to determine the density of air at exit using exit conditions.

- We will assume air to be an ideal gas. Thus using the ideal gas state equation we have:

                   Pe / ρe = R*Te  

Where,

           Te: The absolute temperature at exit

           ρe: The density of air at exit

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρe = Pe / (R*Te)

                ρe = 825 / (0.287*( 273 + 150 ) )

                ρe = 6.79566 kg/m^3

- The mass flow rate ( m^ ) is given:

               m^ = ρe*Qe

                     = ( 6.79566 )*( 0.01963 )

                     = 0.1334 kg/s

- We will use the "continuity equation " for steady state flow inside the compressor i.e mass flow rate remains constant:

              m^ = ρe*Ae*Ve = ρi*Ai*Vi

- Density of air at inlet using inlet conditions. Again, using the ideal gas state equation:

               Pi / ρi = R*Ti  

Where,

           Ti: The absolute temperature at inlet

           ρi: The density of air at inlet

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρi = Pi / (R*Ti)

                ρi = 100 / (0.287*( 273 + 20 ) )

                ρi = 1.18918 kg/m^3

Using continuity expression:

               Ai = m^ / ρi*Vi

               Ai = 0.1334 / 1.18918*1

               Ai = 0.11217 m^2          

- From definition the volumetric flow rate at inlet ( Qi ) is determined by the following equation:

                   Qi = Ai*Vi

Where,

           Ai: The inlet cross sectional area

                  Qi = 0.11217*1

                  Qi = 0.11217 m^3 / s    

- The equations that will help us with required plots are:

Inlet cross section area ( Ai )

                Ai = m^ / ρi*Vi  

                Ai = 0.1334 / 1.18918*Vi

                Ai ( V ) = 0.11217 / Vi   .... Eq 1

Inlet flow rate ( Qi ):

                Qi = 0.11217 m^3 / s ... constant  Eq 2

               

You might be interested in
Water flows through a converging pipe at a mass flow rate of 25 kg/s. If the inside diameter of the pipes sections are 7.0 cm an
ser-zykov [4K]

Answer:

volumetric flow rate = 0.0251 m^3/s

Velocity in pipe section 1 = 6.513m/s

velocity in pipe section 2 = 12.79 m/s

Explanation:

We can obtain the volume flow rate from the mass flow rate by utilizing the fact that the fluid has the same density when measuring the mass flow rate and the volumetric flow rates.

The density of water is = 997 kg/m³

density = mass/ volume

since we are given the mass, therefore, the  volume will be mass/density

25/997 = 0.0251 m^3/s

volumetric flow rate = 0.0251 m^3/s

Average velocity calculations:

<em>Pipe section A:</em>

cross-sectional area =

\pi \times d^2\\=\pi \times 0.07^2 = 3.85\times10^{-3}m^2

mass flow rate = density X cross-sectional area X velocity

velocity = mass flow rate /(density X cross-sectional area)

velocity = 25/(997 \times 3.85\times10^{-3}) = 6.513m/s

<em>Pipe section B:</em>

cross-sectional area =

\pi \times d^2\\=\pi \times 0.05^2= 1.96\times10^{-3}m^2

mass flow rate = density X cross-sectional area X velocity

velocity = mass flow rate /(density X cross-sectional area)

velocity = 25/(997 \times 1.96\times10^{-3}) = 12.79m/s

7 0
3 years ago
Almost all collisions are due to driver error
blondinia [14]

Answer:

Where's the questaion?

4 0
2 years ago
Expalin the application of diesel cycle in detail.
mars1129 [50]

Explanation:

Diesel cycle:

        All diesel engine work on diesel cycle .In diesel cycle there are four process .These processes are as follows

1. Adiabatic reversible compression

2.Heat addition at constant pressure

3.Adiabatic reversible expansion

4.Constant volume heat rejection

In general compression ratio in diesel engine is high as compare to petrol engine.But the efficiency of diesel cycle is less as compare to petrol cycle for same compression ratio.

Applications of diesel cycle:

Generally diesel cycle used for heavy vehicle or equipment because heavy vehicle or equipment is required high initial torque.So this cycle have lots of applications such as in industrial machining,in trucks,power plant,in mining ,in defense or military,large motors ,compressor and pump etc.

   

5 0
3 years ago
Basil is installing a system in Toronto, Ontario where they are wide temperature variations. What is the TD of the system he’s i
marysya [2.9K]
In places with cold winters, space heating systems have a fundamental role in buildings. Without them, indoor temperatures would quickly become unsuitable for human occupancy. The local weather is one of the most important factors when designing a heating system; if two identical buildings are developed in Miami FL and New York City, the heating load will be much higher for the NYC property.

4 0
4 years ago
How is the fuel introduced into the Diesel engine?
Ugo [173]

Answer:

diesel fuel is pumped at high pressure to the injectors which are responsible for entering the fuel into the combustion chamber,

when the piston is at the top the pressure is so high that it explodes the fuel (diesel) that results in a generation of mechanical power

5 0
3 years ago
Other questions:
  • Air is compressed adiabatically from p1 1 bar, T1 300 K to p2 15 bar, v2 0.1227 m3 /kg. The air is then cooled at constant volum
    13·1 answer
  • The ratio of the weight of a substance to the weight of equal volume of water is known as a) Density b) specific gravity c) spec
    8·1 answer
  • How do I calculate the gear ratio​
    6·1 answer
  • A vehicle is moving at a velocity, v, given by v =12t - 3t2 ms-1. Use
    7·1 answer
  • Where does Elizabeth want John to do and what does she want him to do there?​
    15·1 answer
  • Complete the following sentence.
    7·1 answer
  • Sam constructs a circuit, connects a lead acid battery of 2 V to a lamp of resistance 3 Ω and places an ammeter across it. What
    8·2 answers
  • Why it is important to prepare first the materials and tools carpentry before doing the tasks?​
    6·2 answers
  • Their game off badminton is always on Tuesday
    11·1 answer
  • A 75-hp motor that has an efficiency of 91.0% is worn-out and is replaced by a motor that has a high efficiency 75-hp motor that
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!