1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stira [4]
3 years ago
12

Air exits a compressor operating at steady-state, steady-flow conditions at 150 oC, 825 kPa, with a velocity of 10 m/s through a

circular pipe of 5.0 cm diameter.
a. Determine the outlet volumetric flow rate and the mass flow rate of the air.
b. If the air enters the compressor through an inlet at 20.0 oC and 100 kPa and a velocity of 1.0 m/s, determine the volumetric flow rate of the air entering the compressor and the required cross-sectional area of the inlet.
c. Using your equations, plot the inlet volumetric flow rate and the inlet cross-sectional area as the inlet air velocity varies between 0.25 m/s and 10.0 m/s.
Engineering
1 answer:
ioda3 years ago
6 0

Answer:

a) Qe = 0.01963 m^3 / s , mass flow rate m^ = 0.1334 kg/s

b) Inlet cross sectional area = Ai = 0.11217 m^2 , Qi = 0.11217 m^3 / s    

Explanation:

Given:-

- The compressor exit conditions are given as follows:

                  Pressure ( Pe ) = 825 KPa

                  Temperature ( Te ) = 150°C

                  Velocity ( Ve ) = 10 m/s

                  Diameter ( de ) = 5.0 cm

Solution:-

- Define inlet parameters:

                  Pressure = Pi = 100 KPa

                  Temperature = Ti = 20.0

                  Velocity = Vi = 1.0 m/s

                  Area = Ai

- From definition the volumetric flow rate at outlet ( Qe ) is determined by the following equation:

                   Qe = Ae*Ve

Where,

           Ae: The exit cross sectional area

                   Ae = π*de^2 / 4

Therefore,

                  Qe = Ve*π*de^2 / 4

                  Qe = 10*π*0.05^2 / 4

                  Qe = 0.01963 m^3 / s

 

- To determine the mass flow rate ( m^ ) through the compressor we need to determine the density of air at exit using exit conditions.

- We will assume air to be an ideal gas. Thus using the ideal gas state equation we have:

                   Pe / ρe = R*Te  

Where,

           Te: The absolute temperature at exit

           ρe: The density of air at exit

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρe = Pe / (R*Te)

                ρe = 825 / (0.287*( 273 + 150 ) )

                ρe = 6.79566 kg/m^3

- The mass flow rate ( m^ ) is given:

               m^ = ρe*Qe

                     = ( 6.79566 )*( 0.01963 )

                     = 0.1334 kg/s

- We will use the "continuity equation " for steady state flow inside the compressor i.e mass flow rate remains constant:

              m^ = ρe*Ae*Ve = ρi*Ai*Vi

- Density of air at inlet using inlet conditions. Again, using the ideal gas state equation:

               Pi / ρi = R*Ti  

Where,

           Ti: The absolute temperature at inlet

           ρi: The density of air at inlet

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρi = Pi / (R*Ti)

                ρi = 100 / (0.287*( 273 + 20 ) )

                ρi = 1.18918 kg/m^3

Using continuity expression:

               Ai = m^ / ρi*Vi

               Ai = 0.1334 / 1.18918*1

               Ai = 0.11217 m^2          

- From definition the volumetric flow rate at inlet ( Qi ) is determined by the following equation:

                   Qi = Ai*Vi

Where,

           Ai: The inlet cross sectional area

                  Qi = 0.11217*1

                  Qi = 0.11217 m^3 / s    

- The equations that will help us with required plots are:

Inlet cross section area ( Ai )

                Ai = m^ / ρi*Vi  

                Ai = 0.1334 / 1.18918*Vi

                Ai ( V ) = 0.11217 / Vi   .... Eq 1

Inlet flow rate ( Qi ):

                Qi = 0.11217 m^3 / s ... constant  Eq 2

               

You might be interested in
For some transformation having kinetics that obey the Avrami equation, the parameter n is known to have a value of 2. If, after
kotegsom [21]

This question is incomplete, the complete question is;

For some transformation having kinetics that obey the Avrami equation, the parameter n is known to have a value of 2. If, after 100 s, the reaction is 40% complete, how long (total time in seconds) will it take the transformation to go to 95% completion

y = 1 - exp( -ktⁿ )

Answer: the time required for 95% transformation is 242.17 s

Explanation:

First, we calculate the value of k which is the dependent variable in Avrami equation

y = 1 - exp( -ktⁿ )

exp( -ktⁿ ) = 1 - y

-ktⁿ = In( 1 - y )

k = - In( 1 - y ) / tⁿ

now given that; n = 2, y = 40% = 0.40, and t = 100 s

we substitute

k = - In( 1 - 0.40 ) / 100²

k = - In(0.60) / 10000

k = 0.5108 / 10000

k = 0.00005108 ≈ 5.108 × 10⁻⁵

Now calculate the time required for 95% transformation

tⁿ = - In( 1 - y ) / k

t = [- In( 1 - y ) / k ]^1/n

n = 2, y = 95% = 0.95 and k = 5.108 × 10⁻⁵

we substitute our values

t = [- In( 1 - 0.95 ) / 5.108 × 10⁻⁵ ]^1/2

t = [2.9957 / 5.108 × 10⁻⁵]^1/2

t = [ 58647.22 ]^1/2

t = 242.17 s

Therefore the time required for 95% transformation is 242.17 s

8 0
3 years ago
Give me some examples of fragile structures.
Anvisha [2.4K]

Answer:

i don't know if this help tell me if i am wrong

Explanation:

Gravity is the force that pulls all elements of matter together. Matter refers to things you can physically touch. The more matter there is, the greater the amount of gravity or force. This means that the Earth or other planets have a great deal of pull and that everything on Earth is pulled back to Earth.

Some examples of the force of gravity include:

The force that holds the gases in the sun.

The force that causes a ball you throw in the air to come down again.

The force that causes a car to coast downhill even when you aren't stepping on the gas.

The force that causes a glass you drop to fall to the floor.

3 0
3 years ago
A right triangle has a base of 12 inches and a height of 30 inches, what is the centroid of the triangle?​
aliina [53]

Answer:

the correct answer is 42

4 0
2 years ago
How is the energy harnessed and converted into useful energy?
garri49 [273]

Answer:

1. How energy is harnessed?  

Another way to tap solar energy is by collecting the sun's heat. Solar thermal power plants use heat from the sun to create steam, which can then be used to make electricity. On a smaller scale, solar panels that harness thermal energy can be used for heating water in homes, other buildings, and swimming pools.

2. How is solar energy converted into useful energy?

Solar panels convert the sun's light into usable solar energy using N-type and P-type semiconductor material. When sunlight is absorbed by these materials, the solar energy knocks electrons loose from their atoms, allowing the electrons to flow through the material to produce electricity.

Explanation:

hope it helps, please mark as brainliest

6 0
3 years ago
Q5
Klio2033 [76]

The C++ code that would draw all the iterations in the selection sort process on the array is given below:

<h3>C++ Code</h3>

#include <stdio.h>

#include <stdlib.h>

int main() {

   int i, temp1, temp2;

   int string2[16] = { 0, 4, 2, 5, 1, 5, 6, 2, 6, 89, 21, 32, 31, 5, 32, 12 };

   _Bool check = 1;

   while (check) {

       temp1 = string2[i];

       temp2 = string2[i + 1];

       if (temp1 < temp2) {

           string2[i + 1] = temp1;

           string2[i] = temp2;

           i = 0;

       } else {

           i++;

           if (i = 15) {

               check = !check;

           }

       }

   }

   

   return 0;

}

Read more about C++ programming here:

brainly.com/question/20339175

#SPJ1

5 0
1 year ago
Other questions:
  • How does fouling affects the performance of a heat exchanger?
    6·1 answer
  • A simple ideal Rankine cycle with water as the working fluid operates between the pressure limits of 4 MPa in the boiler and 25
    14·2 answers
  • Find the pressure exerted by the water bed on the floor when the bed rests in its normal position. Assume the entire lower surfa
    12·1 answer
  • Create a program named IntegerFacts whose Main() method declares an array of 10 integers.Call a method named FillArray to intera
    12·1 answer
  • The unit weight of a soil is 14.9kN/m3. The moisture content of the soil is17% when the degree of saturation is 60%. Determine:
    15·1 answer
  • A single lane highway has a horizontal curve. The curve has a super elevation of 4% and a design speed of 45 mph. The PC station
    8·1 answer
  • A civil engineer is analyzing the compressive strength of concrete. The compressive strength is approximately normal distributed
    7·1 answer
  • The current flowing into the collector lead of a certain bipolar junction transistor (BJT) is measured to be 1 nA. If no charge
    14·1 answer
  • Engineering problems and it solutions it machine design​
    5·1 answer
  • How high of a column of sae 30 oil would be required to give the same pressure as 700 mm hg?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!