1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denis-greek [22]
3 years ago
10

Evaluate the expression when x =19 and y =7

Mathematics
1 answer:
PtichkaEL [24]3 years ago
3 0

Answer:

Plug in X and Y by replacing the given numbers where you see letters.

Step-by-step explanation:

What I said above.

You might be interested in
When evaluating a survey, Jody saw that 54% of the respondents think that the minimum age of those awarded a driver's license sh
zhuklara [117]
Since the margin of error is 5%, the minimum of supporters will be less than the maximum of disapprovers. 

So the third option will be correct. You cannot make certain conclusions based on this survey.
7 0
3 years ago
Read 2 more answers
Why were members of the Third Estate frustrated with the French government?
Softa [21]

Answer:

i think its c. They thought they paid too much in taxes.

6 0
3 years ago
If 40 men took 10 minutes to make 200 toys,how many man will take 40 minutes to make 350 toys?
Viktor [21]
40=4×10=200 toys
160=4×40=350 toys
7 0
3 years ago
Can anybody help plzz?? 65 points
Yakvenalex [24]

Answer:

\frac{dy}{dx} =\frac{-8}{x^2} +2

\frac{d^2y}{dx^2} =\frac{16}{x^3}

Stationary Points: See below.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties

<u>Calculus</u>

Derivative Notation dy/dx

Derivative of a Constant equals 0.

Stationary Points are where the derivative is equal to 0.

  • 1st Derivative Test - Tells us if the function f(x) has relative max or mins. Critical Numbers occur when f'(x) = 0 or f'(x) = undef
  • 2nd Derivative Test - Tells us the function f(x)'s concavity behavior. Possible Points of Inflection/Points of Inflection occur when f"(x) = 0 or f"(x) = undef

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{8}{x} +2x

<u>Step 2: Find 1st Derivative (dy/dx)</u>

  1. Quotient Rule [Basic Power]:                    f'(x)=\frac{0(x)-1(8)}{x^2} +2x
  2. Simplify:                                                      f'(x)=\frac{-8}{x^2} +2x
  3. Basic Power Rule:                                     f'(x)=\frac{-8}{x^2} +1 \cdot 2x^{1-1}
  4. Simplify:                                                     f'(x)=\frac{-8}{x^2} +2

<u>Step 3: 1st Derivative Test</u>

  1. Set 1st Derivative equal to 0:                    0=\frac{-8}{x^2} +2
  2. Subtract 2 on both sides:                         -2=\frac{-8}{x^2}
  3. Multiply x² on both sides:                         -2x^2=-8
  4. Divide -2 on both sides:                           x^2=4
  5. Square root both sides:                            x= \pm 2

Our Critical Points (stationary points for rel max/min) are -2 and 2.

<u>Step 4: Find 2nd Derivative (d²y/dx²)</u>

  1. Define:                                                      f'(x)=\frac{-8}{x^2} +2
  2. Quotient Rule [Basic Power]:                  f''(x)=\frac{0(x^2)-2x(-8)}{(x^2)^2} +2
  3. Simplify:                                                    f''(x)=\frac{16}{x^3} +2
  4. Basic Power Rule:                                    f''(x)=\frac{16}{x^3}

<u>Step 5: 2nd Derivative Test</u>

  1. Set 2nd Derivative equal to 0:                    0=\frac{16}{x^3}
  2. Solve for <em>x</em>:                                                    x = 0

Our Possible Point of Inflection (stationary points for concavity) is 0.

<u>Step 6: Find coordinates</u>

<em>Plug in the C.N and P.P.I into f(x) to find coordinate points.</em>

x = -2

  1. Substitute:                    f(-2)=\frac{8}{-2} +2(-2)
  2. Divide/Multiply:            f(-2)=-4-4
  3. Subtract:                       f(-2)=-8

x = 2

  1. Substitute:                    f(2)=\frac{8}{2} +2(2)
  2. Divide/Multiply:            f(2)=4 +4
  3. Add:                              f(2)=8

x = 0

  1. Substitute:                    f(0)=\frac{8}{0} +2(0)
  2. Evaluate:                      f(0)=\text{unde} \text{fined}

<u>Step 7: Identify Behavior</u>

<em>See Attachment.</em>

Point (-2, -8) is a relative max because f'(x) changes signs from + to -.

Point (2, 8) is a relative min because f'(x) changes signs from - to +.

When x = 0, there is a concavity change because f"(x) changes signs from - to +.

3 0
3 years ago
Write an expression that represents the perimeter.
Tatiana [17]
I believe it may be C.
7 0
2 years ago
Other questions:
  • 7. Given :
    11·2 answers
  • Write a rule for the nth term of the geometric sequence if r=1/4 and a<br> =6
    15·1 answer
  • How do you simplify 4h-3
    5·2 answers
  • A shopper bought shoes marked $40.<br> The sales tax is 8%. How much did the<br> shopper pay in all?
    7·2 answers
  • 2) Waren dividing the polynomial p(,) = 6n? - 27n2 +41 +36 by(r - 4), the remainder can be
    13·1 answer
  • Explain the steps on how to convert these repeating decimals to a fraction (a) 0.77 (77 is repeating) (b) 2.3 (3 is repeating (c
    5·2 answers
  • The sum of 9 and a number is less than 12. Which of the following inequalities expresses the solutions ?
    14·1 answer
  • Help meeeeeeeeeeeeeeee
    6·1 answer
  • Solve for x in the diagram below.
    6·2 answers
  • Solve x2 + 9x + 9 = 0. (2 points)
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!