1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artyom0805 [142]
3 years ago
5

The earth's worst mass extinction was:

Physics
2 answers:
Ronch [10]3 years ago
7 0
<span>The Permian–Triassic (P–Tr) extinction event, colloquially known as the Great Dying, the End ...... Jump up ^ St. Fleur, Nicholas (16 February 2017). "After Earth's Worst Mass Extinction, Life Rebounded Rapidly, Fossils Suggest". New York Times ...</span><span>

</span>
Volgvan3 years ago
4 0

Permian-Triassic ..........................................................

You might be interested in
Carbonic acid _____.
artcher [175]
Dissolves limestone and other rocks.

3 0
3 years ago
Read 2 more answers
What is the precision for each measurement for the online simulation. What would be the precision for force
zimovet [89]

Answer:

Unit of precision for force is the Newton.

Explanation:

It is the official unit used to describe force in science and mostly abbreviated with the symbol N.

4 0
3 years ago
Zero, a hypothetical planet, has a mass of 5.3 x 1023 kg, a radius of 3.3 x 106 m, and no atmosphere. A 10 kg space probe is to
Andrej [43]

(a) 3.1\cdot 10^7 J

The total mechanical energy of the space probe must be constant, so we can write:

E_i = E_f\\K_i + U_i = K_f + U_f (1)

where

K_i is the kinetic energy at the surface, when the probe is launched

U_i is the gravitational potential energy at the surface

K_f is the final kinetic energy of the probe

U_i is the final gravitational potential energy

Here we have

K_i = 5.0 \cdot 10^7 J

at the surface, R=3.3\cdot 10^6 m (radius of the planet), M=5.3\cdot 10^{23}kg (mass of the planet) and m=10 kg (mass of the probe), so the initial gravitational potential energy is

U_i=-G\frac{mM}{R}=-(6.67\cdot 10^{-11})\frac{(10 kg)(5.3\cdot 10^{23}kg)}{3.3\cdot 10^6 m}=-1.07\cdot 10^8 J

At the final point, the distance of the probe from the centre of Zero is

r=4.0\cdot 10^6 m

so the final potential energy is

U_f=-G\frac{mM}{r}=-(6.67\cdot 10^{-11})\frac{(10 kg)(5.3\cdot 10^{23}kg)}{4.0\cdot 10^6 m}=-8.8\cdot 10^7 J

So now we can use eq.(1) to find the final kinetic energy:

K_f = K_i + U_i - U_f = 5.0\cdot 10^7 J+(-1.07\cdot 10^8 J)-(-8.8\cdot 10^7 J)=3.1\cdot 10^7 J

(b) 6.3\cdot 10^7 J

The probe reaches a maximum distance of

r=8.0\cdot 10^6 m

which means that at that point, the kinetic energy is zero: (the probe speed has become zero):

K_f = 0

At that point, the gravitational potential energy is

U_f=-G\frac{mM}{r}=-(6.67\cdot 10^{-11})\frac{(10 kg)(5.3\cdot 10^{23}kg)}{8.0\cdot 10^6 m}=-4.4\cdot 10^7 J

So now we can use eq.(1) to find the initial kinetic energy:

K_i = K_f + U_f - U_i = 0+(-4.4\cdot 10^7 J)-(-1.07\cdot 10^8 J)=6.3\cdot 10^7 J

3 0
3 years ago
a typical top fuel dragstar has a mass of 900 kg what is the force applied to a dragstar by the static friction of the strip the
AnnZ [28]
Wonderful.
You've given us ' m '.
Now, if we only had ' a ', we could come back at you with ' f '.
6 0
4 years ago
The 630-nm light from a helium-neon laser irradiates a grating. The light then falls on a screen where the first bright spot is
dimaraw [331]

Answer:

464.8 nm

Explanation:

The second wavelength of light can be calculated using the next equation:

\lambda = \frac{x*d}{L}        

<u>Where:</u>

<em>λ : is the wavelength of light</em>

<em>x: is the distance from the central maximum</em>

<em>d: is the distance between the spots                      </em>

<em>L: is the lenght from the screen to the bright spot</em>

For the first wavelength of light we have:

\lambda_{1} = \frac{x_{1}*d}{L}

630 \cdot 10^{-9} m = \frac{0.61 m*d}{L}

\frac{d}{L} = \frac{630 \cdot 10^{-9} m}{0.61 m} = 1.033 \cdot 10^{-6}  (1)    

For the second wavelength of light we have:

\lambda_{2} = \frac{x_{2}*d}{L}

\lambda_{2} = 0.45 m*\frac{d}{L}   (2)  

By entering equation (1) into equation (2) we have:

\lambda_{2} = 0.45 m* 1.033 \cdot 10^{-6} = 4.648 \cdot 10^{-7} m = 464.8 nm

Therefore, the second wavelength is 464.8 nm

I hope it helps you!          

3 0
3 years ago
Other questions:
  • a ball is thrown horizontally from a 20 m high building with a speed of 5.0 m/s. How far from the base of the building does the
    5·1 answer
  • Caves are a type of island ecosystem according to the theory of island biogeography. Please select the best answer from the choi
    8·1 answer
  • The total magnification of a specimen being viewed with a 10X ocular lens and a 40X objective lens is _____.
    10·1 answer
  • Pea plants have 2 advantages as genetic specimens:<br>​
    7·1 answer
  • two equal and unlike parallel forces of magnitude 34N act on a rigid body,such that the moment of couple is 8.50 Nm. calculate t
    12·1 answer
  • A driver must always stop within 50 ft but not less than ____________ ft from the nearest rail when the signal is flashing and t
    11·2 answers
  • Why did it take Kepler so long to discover the truth about the motions of the solar system?
    5·1 answer
  • A ball rolls on a carpet. The ball experiences friction as it rolls. How will friction affect
    7·1 answer
  • The Earth's biosphere is consists of
    13·1 answer
  • an 8 kilogram ball is fired horizontally form a 1 times 10^3 kilogram cannon initially at rest after having been fired the momen
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!