Answer:
25 mm = 0 deg C
200 mm = 100 deg C
200 - 25 = 175 = change in thread per 100 deg C
95 - 25 = 70 mm - change in thread from 0 deg C
70 / 175 * 100 = 40 deg C final temperature at 95 mm
Answer:
21.35 cm^3
Explanation:
let the volume at the surface of fresh water is V.
The volume at a depth of 100 m is V' = 2 cm^3
temperature remains constant.
density of water, d = 1000 kg/m^3
Pressure at the surface of fresh water is atmospheric pressure,
P = Po = 1.013 x 10^5 N/m^2
The pressure at depth 100 m is P' = Po + hdg
P' = 
P' = 10.813 x 10^5 N/m^2
Use the Boyle's law
P V = P' V'

V = 21.35 cm^3
Thus, the volume of air bubble at the surface of fresh water is 21.35 cm^3.
120 km/3 hours. 40/1=?/3 1x3=3 hours so 40x3=120 km
Answer:
143.352 watt.
Explanation:
So, in the question above we are given the following parameters or data or information that is going to assist us in answering the question above efficiently. The parameters are:
"A 1.8 m wide by 1.0 m tall by 0.65m deep home freezer is insulated with 5.0cm thick Styrofoam insulation"
The inside temperature of the freezer = -20°C.
Thickness = 5.0cm = 5.0 × 10^-2 m.
Step one: Calculate the surface area of the freezer. That can be done by using the formula below:
Area = 2[ ( Length × breadth) + (breadth × height) + (length × height) ].
Area = 2[ (1.8 × 0.65) + (0.65 × 1.0) + (1.8 × 1.0)].
Area = 7.24 m^2.
Step two: Calculate the rate of heat transfer by using the formula below;
Rate of heat transfer =[ thermal conductivity × Area (T1 - T2) ]/ thickness.
Rate of heat transfer = 0.022 × 7.24(25+20)/5.0 × 10^-2 = 143.352 watt.