1. 0.16 N
The weight of a man on the surface of asteroid is equal to the gravitational force exerted on the man:
where
G is the gravitational constant
is the mass of the asteroid
m = 100 kg is the mass of the man
r = 2.0 km = 2000 m is the distance of the man from the centre of the asteroid
Substituting, we find
2. 1.7 m/s
In order to stay in orbit just above the surface of the asteroid (so, at a distance r=2000 m from its centre), the gravitational force must be equal to the centripetal force
where v is the minimum speed required to stay in orbit.
Re-arranging the equation and solving for v, we find:
Using your periodic table if you look at it 3-11 are tansition metals so the horizontal Group Number will help if the group number has to digits just remove the one so if it were to be 13, the valence would be 3, if it were 14 the valence would be ,4 if it were 15, the valence would be 5, if it were 16 the valence would be 6, if it were 17 the valence would be 7 if it were group 18 the valence would be 8 so if anymore help needed to explain hit me up
Answer:
D, I think.
Explanation:
I had a quiz in Plate Tectonics and there was 2 questions that are related to this, but not the exact question.
Which material rises from cracks in oceanic crust
-molten rock
Which is the first step in the seafloor spreading process?
-a crack forms in oceanic crust.
those are all right btw, so you can decide if the answer I told you is right or not.