- The best method to test Zoe's claim is an observational study, as with this method it is possible to observe if the claim presents some truth to it. Observational studies are often used in testing claims like Zoe's as they allowed to have a great access to the variable that are behind a claim of that type, and so they are also more accessible.
- The set up I would use is an observational study of a great number of people, over a long period of time, that have to have<span> kale for breakfast every day, with a measurement of their cholesterol over the time. the great number and the long period of study assured that the variable subject of study is statistically represented in an optimal way. </span>
The answer is 5 units. the top is 10, and x is half of that
Answer:
No
Step-by-step explanation:
A rational number is a number that can be expressed as a fraction p/q where p and q are integers and q!=0. A rational number p/q is said to have numerator p and denominator q. Numbers that are not rational are called irrational numbers. The real line consists of the union of the rational and irrational numbers. The set of rational numbers is of measure zero on the real line, so it is "small" compared to the irrationals and the continuum.
The set of all rational numbers is referred to as the "rationals," and forms a field that is denoted Q. Here, the symbol Q derives from the German word Quotient, which can be translated as "ratio," and first appeared in Bourbaki's Algèbre (reprinted as Bourbaki 1998, p. 671).
Any rational number is trivially also an algebraic number.
Examples of rational numbers include -7, 0, 1, 1/2, 22/7, 12345/67, and so on. Farey sequences provide a way of systematically enumerating all rational numbers.
The set of rational numbers is denoted Rationals in the Wolfram Language, and a number x can be tested to see if it is rational using the command Element[x, Rationals].
The elementary algebraic operations for combining rational numbers are exactly the same as for combining fractions.
It is always possible to find another rational number between any two members of the set of rationals. Therefore, rather counterintuitively, the rational numbers are a continuous set, but at the same time countable.
Answer:
10
Step-by-step explanation:
cos(30) = b / c
c = b / cos(30)
c = 5xsqrt(3) / 0.866
c = 10
Answer:
A?
Step-by-step explanation: