Answer:
The answer is 12.8.
Step-by-step explanation:
0.16 times 80 = 12.8
The change in the water vapors is modeled by the polynomial function c(x). In order to find the x-intercepts of a polynomial we set it equal to zero and solve for the values of x. The resulting values of x are the x-intercepts of the polynomial.
Once we have the x-intercepts we know the points where the graph crosses the x-axes. From the degree of the polynomial we can visualize the end behavior of the graph and using the values of maxima and minima a rough sketch can be plotted.
Let the polynomial function be c(x) = x
² -7x + 10
To find the x-intercepts we set the polynomial equal to zero and solve for x as shown below:
x
² -7x + 10 = 0
Factorizing the middle term, we get:
x
² - 2x - 5x + 10 = 0
x(x - 2) - 5(x - 2) =0
(x - 2)(x - 5)=0
x - 2 = 0 ⇒ x=2
x - 5 = 0 ⇒ x=5
Thus the x-intercept of our polynomial are 2 and 5. Since the polynomial is of degree 2 and has positive leading coefficient, its shape will be a parabola opening in upward direction. The graph will have a minimum point but no maximum if the domain is not specified. The minimum points occurs at the midpoint of the two x-intercepts. So the minimum point will occur at x=3.5. Using x=3.5 the value of the minimum point can be found. Using all this data a rough sketch of the polynomial can be constructed. The figure attached below shows the graph of our polynomial.
Answer:
5 is the interquartile range
Step-by-step explanation:
•25th Percentile: 7
•50th Percentile: 8.5
•75th Percentile: 12
•Interquartile Range: 5
The answer is C,

We use the 'more than or equal sign' as the consultant needs to make at least $600 - so exactly $600 or more than $600
Answer:
Step-by-step explanation:
C.35%
If you divide the number of hearts drawn by the number of total draws you get your answer.
14/20=0.35