Answer:
The factored expression is 2(x² + 5)(x + 3).
Step-by-step explanation:
Hey there!
We can use a factoring technique referred to as "grouping" to solve this problem.
Grouping is used for polynomials with four terms as a quick and easy factoring method to remove the GCF and get down to the initial terms that create the expression/function.
Grouping works in the following matter:
- Given equation: ax³ + bx² + cx + d
- Group a & b, c & d: (ax³ + bx²) + (cx + d)
- Pull GCFs and factors
Let's apply these steps to the given equation.
- Given equation: 2x³ + 6x² + 10x + 30
- Group a & b, c & d: (2x³ + 6x²) + (10x + 30)
- Pull GCFs and factors: 2x²(x + 3) + 10(x + 3)
As you'll see, we have a common term with both sides of the expression. This term, (x + 3), is a valuable asset to the factoring process. This is one of the factors for our expression.
Now, we use our GCFs to create another factor.
- List GCFs: 2x², 10
- Create a term: (2x² + 10)
Finally, we'll need to simplify this one by taking another GCF, 2.
- Pull GCF: 2(x² + 5)
Now that we have this term, we need to understand that this <em>could</em> also be factored further using imaginary numbers, but it is also acceptable to leave it in this form.
Therefore, we have our final factors: 2(x² + 5) and (x + 3).
However, when we factor, we place all of our terms together. This leaves us with the final answer: 2(x² + 5)(x + 3).
i hope it helps mark me brainliest
Step-by-step explanation:
it is Parallelogram
Answer:
432
Step-by-step explanation:
b x h (base x height)
the base is 27 yards and the height is 16.
27 x 16 = 432
If their equal(Same amount)
Answer:
its alot to explain but i will try to make it as simple as possible
Step-by-step explanation:
your first goal is to make each problem into the form ax^2+bx+c=0
number 1, 2, 7 and 8 is already done for you
now all you have to do is plug in each number in the standard form into the quadtratic formula.
basically at this point you can just use your calculator to do the rest of the work. dont forget parentheses so it doesnt get confused...
or you can perform the algebraic work.. its all just a matter of plugging in the right numbers into the quadratic formula...
cant really do the work for you since im on my phone. but yeah all you need to do step one is transform each problem into ax^2+bx+c=0 form
then step 2, plug in each number in to the quadtratic formula. from there calculate using basic algebraic rules