Without any calculations it's evident it can't be neither B (both numbers are even, so they're divisible by 2) nor C (the numbers end in 0 and 5, so they're divisible by 5).
A.

Both numbers have a factor of 3, so they're not relatively prime.
That means it must be D. But, let's check it.

Indeed, those two numbers are relatively prime.
Answer:

Step-by-step explanation:
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
The population proportion have the following distribution
And we can solve the problem using the z score on this case given by:

We are interested on this probability:

And we can use the z score formula, and we got this:


And we can find this probability like this:

Answer:
check your commments
Step-by-step explanation:
Note that x² + 2x + 3 = x² + x + 3 + x. So your integrand can be written as
<span>(x² + x + 3 + x)/(x² + x + 3) = 1 + x/(x² + x + 3). </span>
<span>Next, complete the square. </span>
<span>x² + x + 3 = x² + x + 1/4 + 11/4 = (x + 1/2)² + (√(11)/2)² </span>
<span>Also, for the x in the numerator </span>
<span>x = x + 1/2 - 1/2. </span>
<span>So </span>
<span>(x² + 2x + 3)/(x² + x + 3) = 1 + (x + 1/2)/[(x + 1/2)² + (√(11)/2)²] - 1/2/[(x + 1/2)² + (√(11)/2)²]. </span>
<span>Integrate term by term to get </span>
<span>∫ (x² + 2x + 3)/(x² + x + 3) dx = x + (1/2) ln(x² + x + 3) - (1/√(11)) arctan(2(x + 1/2)/√(11)) + C </span>
<span>b) Use the fact that ln(x) = 2 ln√(x). Then put u = √(x), du = 1/[2√(x)] dx. </span>
<span>∫ ln(x)/√(x) dx = 4 ∫ ln u du = 4 u ln(u) - u + C = 4√(x) ln√(x) - √(x) + C </span>
<span>= 2 √(x) ln(x) - √(x) + C. </span>
<span>c) There are different approaches to this. One is to multiply and divide by e^x, then use u = e^x. </span>
<span>∫ 1/(e^(-x) + e^x) dx = ∫ e^x/(1 + e^(2x)) dx = ∫ du/(1 + u²) = arctan(u) + C </span>
<span>= arctan(e^x) + C.</span>