A/3=7/10
21=10a
a=2.1
100a=100*2.1=210
Answer:
See description below.
Step-by-step explanation:
To choose the correct equation, find the slope of the line on the graph. Identify two points on the line. Then subtract to find their rate of change using the slope formula.

When you know the slope, find the negative reciprocal. For example, if the slope is 2/1 then the negative reciprocal is -1/2. This is the slope of a perpendicular line to a line with slope 2. Choose the equation which has this same slope.
Example:
y = 2x -1
y= -1/2 +5
Answer:

Step-by-step explanation:
We are given the following in the question:
The numbers of teams remaining in each round follows a geometric sequence.
Let a be the first the of the geometric sequence and r be the common ration.
The
term of geometric sequence is given by:


Dividing the two equations, we get,

the first term can be calculated as:

Thus, the required geometric sequence is

36 cm^2
Step-by-step explanation:
<u>Small</u><u> </u><u>window</u>
Length: 2cm
Width: 2cm
<u>Area</u><u>:</u> 4 cm^2
<u>Big window</u>
Length: 4cm
Width: 3cm
<u>Area</u><u>:</u> 12 cm^2
Total area of the windows:
(Area of 4 small windows + area of 1 big window)
(4 cm^2 x 4 + 12cm^2)
= <u>28 cm^2</u>
<u>Above</u><u> </u><u>window</u><u> </u><u>(</u><u>approx</u><u>.</u><u>)</u>
<u>Rectangle</u>
Length: 3cm
Width: 2cm
<u>Area</u><u>:</u> 6 cm^2
<u>T</u><u>riangle</u>
Base: 1cm
Height: 1cm
<u>Area</u><u>:</u> 2 x 0.5 cm^2 = 1 cm^2
<u>Square</u><u> </u><u>(</u><u>between</u><u> </u><u>the</u><u> </u><u>triangles</u><u>)</u>
Length: 1cm
Width: 1cm
<u>Area</u><u>:</u> 1 cm^2
= 8 cm^2
<u>TOTAL</u><u> </u><u>AREA</u><u> </u><u>OF</u><u> </u><u>ALL</u><u> </u><u>WINDOWS</u>
= AREA OF 4 WINDOWS + AREA OF BIG WINDOW + AREA OF ABOVE WINDOW
= 16 cm^2 + 12 cm^2 + 8 cm^2
<h3>
= <u>
36 cm^2</u></h3>
<em>I</em><em> </em><em>hope</em><em> </em><em>I</em><em> </em><em>made</em><em> </em><em>the</em><em> </em><em>explanations</em><em> </em><em>clear</em><em> </em><em>enough</em><em> </em><em>to</em><em> </em><em>make</em><em> </em><em>it</em><em> </em><em>easier</em><em> </em><em>for</em><em> </em><em>you</em><em> </em><em>to</em><em> </em><em>understand</em><em>!</em>