Answer:
Collect more fuel than you think you can use; you may need more than you estimate. Pile fine twigs, grass, or bark shavings loosely as a base.
Answer: 90 meters
Explanation: 60/20=3 and 3*30=90 so it is 90 meters.
<span>The amount of kinetic energy an object has depends on its "speed." Kinetic energy is energy a object has while its in motion so the key word is speed.
Hope this helps!
</span>
Answer:
I₂ = 0.04 W / m²
Explanation:
Sound intensity is the power emitted between the unit area
I = W / A
W = I A
sound is a wave that travels in space whereby its energy is distributed on the surface of a sphere
A = 4π r²
we substitute
W = I (4π r²)
the emission power is constant, so the intensity at two different points is
W = I₁ 4π r₁² = I₂ 4π r₂²
so the equation is
I₁ r₁² = I₂ r₂²
In this case the units are not shown in the exercise, suppose that all units are in the SI system
I₂ =
let's calculate
I₂ = 4
I₂ = 0.04 W / m²
The wavelength of the interfering waves is 3.14 m.
<h3>Calculation:</h3>
The general equation of a standing wave is given by:
y = 2A sin (kx) cos (ωt) ......(1)
The given equation represents the standing wave produced by the interference of two harmonic waves:
y = 3 sin (2x) cos 5t .......(2)
Comparing equations (1) and (2):
k = 2
We know that,
k = 2π/λ
λ = 2π/k
λ = 2 (3.14)/ 2
λ = 3.14 m
Therefore, the wavelength of the interfering waves is 3.14 m.
I understand the question you are looking for is this:
Two harmonic waves traveling in opposite directions interfere to produce a standing wave described by y = 3 sin (2x) cos 5t where x is in m and t is in s. What is the wavelength of the interfering waves?
Learn more about interfering waves here:
brainly.com/question/2910205
#SPJ4