Answer:
60 rad/s
Explanation:
∑τ = Iα
Fr = Iα
For a solid disc, I = ½ mr².
Fr = ½ mr² α
α = 2F / (mr)
α = 2 (20 N) / (0.25 kg × 0.30 m)
α = 533.33 rad/s²
The arc length is 1 m, so the angle is:
s = rθ
1 m = 0.30 m θ
θ = 3.33 rad
Use constant acceleration equation to find ω.
ω² = ω₀² + 2αΔθ
ω² = (0 rad/s)² + 2 (533.33 rad/s²) (3.33 rad)
ω = 59.6 rad/s
Rounding to one significant figure, the angular velocity is 60 rad/s.
Frequency has the unit hertz.
the Orbital Velocity is the velocity sufficient to cause a natural or artificial satellite to remain in orbit. Inertia of the moving body tends to make it move on in a straight line, while gravitational force tends to pull it down. The orbital path, elliptical or circular, representing a balance between gravity and inertia, and it follows a rue that states that the more massive the body at the centre of attraction is, the higher is the orbital velocity for a particular altitude or distance.
Answer:
Less than 1 m
Explanation:
When objects are getting closer to each other there is a slight change in the wavelength that is being transmitted by either objects. This is known as the blue shift of waves. Here, the wavelength reduces.
In the opposite case the when objects are getting farther from each other there is a slight change in the wavelength that is being transmitted by either objects. This is known as the red shift. Here, the wavelength increases.
In this case the spaceship is getting close to Earth hence the wavelength will be lower than 1 m.
Answer:
Explanation:
density of galaxies would be
times higher which is equal to 50.81.
It means in a cube that today contains one galaxy the size of the Milky Way, we would instead find 50.81 galaxies this size.
You can round this off to 52