the answer is definitely A.
Answer:
Explanation:
For answer this we will use the law of the conservation of the angular momentum.
so:
where is the moment of inertia of the merry-go-round, is the initial angular velocity of the merry-go-round, is the moment of inertia of the merry-go-round and the child together and is the final angular velocity.
First, we will find the moment of inertia of the merry-go-round using:
I =
I =
I = 359.375 kg*m^2
Where is the mass and R is the radio of the merry-go-round
Second, we will change the initial angular velocity to rad/s as:
W = 0.520*2 rad/s
W = 3.2672 rad/s
Third, we will find the moment of inertia of both after the collision:
Finally we replace all the data:
Solving for :
The answer to this question is A - 25 N
<span>Answer: "a cold front" .
_________________________________</span>