For Less number of oxygen atoms will be less acidic. Therefore, the rank will be.... So there is 1 oxygen atom bonded to each of the 2 nitrogen atoms.
For HNO3 or {HONO}2. So there are 3 oxygen atoms bonded to the nitrogen.
For HNO2 or HONO. So there are 2 oxygen atoms bonded to the nitrogen.
Less number of oxygen atoms will be less acidic. Therefore, the rank will be...
HNO3>HNO2>H2N2O2
Acid strength is the tendency of an acid, symbolized by the chemical formula, to dissociate into a proton, and an anion, The dissociation of a strong acid in solution is effectively complete, except in its most concentrated solutions.
The strength of a weak organic acid may depend on substituent effects. The strength of an inorganic acid depends on the atom’s oxidation state to which the proton may be attached. Acid strength is solvent-dependent. For example, hydrogen chloride is a strong acid in an aqueous solution but is a weak acid when dissolved in glacial acetic acid.
Learn more about Acid strength here:
brainly.com/question/3223615
#SPJ4
Answer:
0.39 moles
Explanation:
To find how many moles are in 50.0 g of CaC₂O₄ you divide the grams of the sample by the molar mass of the compound;
=0.39 mol
The grams cancel out and you are left with moles!
I hope this help ^-^
Answer:
The rate at which
is being produced is 0.0228 M/s.
The rate at which
is being consumed is 0.0912 M/s.
Explanation:

Rate of the reaction : R
![R=\frac{-1}{4}\frac{d[PH_3]}{dt}=\frac{1}{6}\frac{d[H_2]}{dt}=\frac{1}{1}\frac{d[P_4]}{dt}](https://tex.z-dn.net/?f=R%3D%5Cfrac%7B-1%7D%7B4%7D%5Cfrac%7Bd%5BPH_3%5D%7D%7Bdt%7D%3D%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7Bd%5BH_2%5D%7D%7Bdt%7D%3D%5Cfrac%7B1%7D%7B1%7D%5Cfrac%7Bd%5BP_4%5D%7D%7Bdt%7D)
The rate at which hydrogen is being formed = ![\frac{d[H_2]}{dt}=0.137 M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BH_2%5D%7D%7Bdt%7D%3D0.137%20M%2Fs)
![R=\frac{1}{6}\frac{d[H_2]}{dt}](https://tex.z-dn.net/?f=R%3D%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7Bd%5BH_2%5D%7D%7Bdt%7D)

The rate at which
is being produced:
![R=\frac{1}{1}\frac{d[P_4]}{dt}](https://tex.z-dn.net/?f=R%3D%5Cfrac%7B1%7D%7B1%7D%5Cfrac%7Bd%5BP_4%5D%7D%7Bdt%7D)
![0.0228 M/s=\frac{1}{1}\frac{d[P_4]}{dt}](https://tex.z-dn.net/?f=0.0228%20M%2Fs%3D%5Cfrac%7B1%7D%7B1%7D%5Cfrac%7Bd%5BP_4%5D%7D%7Bdt%7D)
The rate at which
is being consumed :
![R=\frac{-1}{4}\frac{d[PH_3]}{dt}](https://tex.z-dn.net/?f=R%3D%5Cfrac%7B-1%7D%7B4%7D%5Cfrac%7Bd%5BPH_3%5D%7D%7Bdt%7D)
![0.0228 M/s\times 4=\frac{-1}{1}\frac{d[PH_3]}{dt}](https://tex.z-dn.net/?f=0.0228%20M%2Fs%5Ctimes%204%3D%5Cfrac%7B-1%7D%7B1%7D%5Cfrac%7Bd%5BPH_3%5D%7D%7Bdt%7D)
![\frac{-1}{1}\frac{d[PH_3]}{dt}=0.912 M/s](https://tex.z-dn.net/?f=%5Cfrac%7B-1%7D%7B1%7D%5Cfrac%7Bd%5BPH_3%5D%7D%7Bdt%7D%3D0.912%20M%2Fs)
Answer:
c
Explanation:
because they transfer an electron the sodium ion has a positive charge, and the chlorine ion has a negative charge so one gives off positive and one gives of negative
The formula for density = mass/volume
So the units are gcm^3
So multiply by 1000 to get into grams - 1030500
Add units
1030500gcm^3