Answer:
![f(x)=\sqrt[3]{x-4} , g(x)=6x^{2}\textrm{ or }f(x)=\sqrt[3]{x},g(x)=6x^{2} -4](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7Bx-4%7D%20%2C%20g%28x%29%3D6x%5E%7B2%7D%5Ctextrm%7B%20or%20%7Df%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D%2Cg%28x%29%3D6x%5E%7B2%7D%20-4)
Step-by-step explanation:
Given:
The function, ![H(x)=\sqrt[3]{6x^{2}-4}](https://tex.z-dn.net/?f=H%28x%29%3D%5Csqrt%5B3%5D%7B6x%5E%7B2%7D-4%7D)
Solution 1:
Let ![f(x)=\sqrt[3]{x}](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D)
If
, then,
![\sqrt[3]{g(x)} =\sqrt[3]{6x^{2}-4}\\g(x)=6x^{2}-4](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bg%28x%29%7D%20%3D%5Csqrt%5B3%5D%7B6x%5E%7B2%7D-4%7D%5C%5Cg%28x%29%3D6x%5E%7B2%7D-4)
Solution 2:
Let
. Then,
![f(g(x))=H(x)=\sqrt[3]{6x^{2}-4}\\\sqrt[3]{g(x)-4}=\sqrt[3]{6x^{2}-4} \\g(x)-4=6x^{2}-4\\g(x)=6x^{2}](https://tex.z-dn.net/?f=f%28g%28x%29%29%3DH%28x%29%3D%5Csqrt%5B3%5D%7B6x%5E%7B2%7D-4%7D%5C%5C%5Csqrt%5B3%5D%7Bg%28x%29-4%7D%3D%5Csqrt%5B3%5D%7B6x%5E%7B2%7D-4%7D%20%5C%5Cg%28x%29-4%3D6x%5E%7B2%7D-4%5C%5Cg%28x%29%3D6x%5E%7B2%7D)
Similarly, there can be many solutions.
Answer:
60%.
Step-by-step explanation:
We have been given that Greta made 36 out of 60 free throws during a basketball season.
To find the percent of free throws that Greta made we will find 36 is what percent of 60.



Therefore, Greta made 60% of free throws.
Answer:you have to ask your teacher for mad extra credit and maybe turn in late assignments and retake quizes
Step-by-step explanation:
Answer:
-4x^2+5x-28
Step-by-step explanation:
Expand -7(x^2 +4) = 3x^2+5x-7x^2-28
Simplify 3x^2+5x-7x^2-28 = -4x^2+5x-28
Answer:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B-1%7D%7B4x%5E%5Cbigg%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
Exponential Properties
- Exponential Property [Rewrite]:

- Exponential Property [Root Rewrite]:
![\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Csqrt%5Bn%5D%7Bx%7D%20%3D%20x%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify.</em>
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D)
<u>Step 2: Differentiate</u>
- Simplify:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \bigg( \frac{1}{2\sqrt{x}} \bigg)'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cbigg%28%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7D%20%5Cbigg%29%27)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{\sqrt{x}} \bigg)'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cbigg%28%20%5Cfrac%7B1%7D%7B%5Csqrt%7Bx%7D%7D%20%5Cbigg%29%27)
- Rewrite [Exponential Rule - Root Rewrite]:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{x^\Big{\frac{1}{2}}} \bigg)'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cbigg%28%20%5Cfrac%7B1%7D%7Bx%5E%5CBig%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%20%5Cbigg%29%27)
- Rewrite [Exponential Rule - Rewrite]:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( x^\bigg{\frac{-1}{2}} \bigg)'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cbigg%28%20x%5E%5Cbigg%7B%5Cfrac%7B-1%7D%7B2%7D%7D%20%5Cbigg%29%27)
- Derivative Rule [Basic Power Rule]:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{-1}{2} x^\bigg{\frac{-3}{2}} \bigg)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cbigg%28%20%5Cfrac%7B-1%7D%7B2%7D%20x%5E%5Cbigg%7B%5Cfrac%7B-3%7D%7B2%7D%7D%20%5Cbigg%29)
- Simplify:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4} x^\bigg{\frac{-3}{2}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B-1%7D%7B4%7D%20x%5E%5Cbigg%7B%5Cfrac%7B-3%7D%7B2%7D%7D)
- Rewrite [Exponential Rule - Rewrite]:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B-1%7D%7B4x%5E%5Cbigg%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation