luconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms.[2] In vertebrates, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of the kidneys. In ruminants, this tends to be a continuous process.[3] In many other animals, the process occurs during periods of fasting, starvation, low-carbohydrate diets, or intense exercise. The process is highly endergonic until it is coupled to the hydrolysis of ATP or GTP, effectively making the process exergonic. For example, the pathway leading from pyruvate to glucose-6-phosphate requires 4 molecules of ATP and 2 molecules of GTP to proceed spontaneously. Gluconeogenesis is often associated with ketosis. Gluconeogenesis is also a target of therapy for type 2 diabetes, such as the antidiabetic drug, metformin, which inhibits glucose formation and stimulates glucose uptake by cells.[4] In ruminants, because dietary carbohydrates tend to be metabolized by rumen organisms, gluconeogenesis occurs regardless of fasting, low-carbohydrate diets, exercise, etc.[5]
Answer:
Si existe variación en el acervo genético de la población, esto permite que la selección natural actúe sobre los rasgos de la población que permiten la adaptación al ambiente cambiante. Cuanta más diversidad hay en una población, mayor es la probabilidad de que la población pueda adaptarse a los nuevos cambios.
Explanation:
Photosynthesis takes place... It also absorbs light and gives the green color pigmentation
Answer:
Viruses have to invade the body of a host organism in order to replicate their particles. Therefore, most viruses are pathogenic. The main difference between bacteria and virus is that bacteria are living cells, reproducing independently and viruses are nonliving particles, requiring a host cell for their replication.
hope this helps :)