Answer:
H₀: µ ≤ $8,500; H₁: µ > $8,500
z= +1.645
Step-by-step explanation:
From the given problem As average cost of tuition and room and board at a small private liberal is less than the financial administrator As hypothesis is true.
As standard deviation is $ 1,200
α = 0.05
H₀: µ ≤ $8,500
if the null hypothesis is true then value for critical z is +1.645.
Answer:
The answer to your question is: letter C
Step-by-step explanation:
Multiplicative inverse is a pair of numbers which product gives 1.
Then
x will be our number
-9x = 1
x = - 1/9
because
-9 x
=
= 1
Y- intercept is a point where any graph crosses the y- axis.
X- intercept is a point where any graph crosses the x- axis.
This means the coordinate of the point of intersection will always have the x point as 0. So any point of the form ( 0, y) is the y- intercept. Any point of the form (x,0) is the x- intercept.
Given point are :
(0,-6) : y intercept
(-2,0) : x intercept
(-6,0): x- intercept
(0,-2): y- intercept
Solid is if x is greater/less than or equal to (there isn’t a symbol for it) the line and the line would be dashed if x is < or > something
<span>A random sample is drawn from a population with mean μ = 66 and standard deviation σ = 5.5. use table 1.
a. is the sampling distribution of the sample mean with n = 16 and n = 36 normally distributed? yes, both the sample means will have a normal distribution. no, both the sample means will not have a normal distribution. no, only the sample mean with n = 16 will have a normal distribution. no, only the sample mean with n = 36 will have a normal distribution.
b. can you use the standard normal distribution to calculate the probability that the sample mean falls between 66 and 68 for both sample sizes? yes, for both the sample sizes, standard normal distribution could be used. no, for both the sample sizes, standard normal distribution could not be used. no, only for the sample size with n = 16, standard normal distribution could be used. no, only for the sample size with n = 36, standard normal distribution could be used.
c. calculate the probability that the sample mean falls between 66 and 68 for n = 36. (round intermediate calculations to 4 decimal places, "z" value to 2 decimal places, and final answer to 4 decimal places.)</span>