Answer:
0, 1, 2
Step-by-step explanation:
Euclid's division Lemma states that for any two positive integers ‘a’ and ‘b’ there exist two unique whole numbers ‘q’ and ‘r’ such that , a = bq + r, where 0≤ r < b.
Here, a= Dividend, b= Divisor, q= quotient and r = Remainder.
According to Euclid's division lemma a 3q+r, where 0≤r≤3 and r is an integer.
Therefore, the values of r can be 0, 1 or 2.
X > 90 idk if thats what u mean or not
This question boils down to this:
"What is the diagonal of a square with a side length of 90 ft?"
The key to this question is the properties of squares.
All of the angles in a square are right, (90°) but that diagonal is going to bisect two of those into 45° angles.
Now we have two triangles, each with angle measures of 45°, 45°. and 90°.
(an isoceles right triangle)
This 45-45-90 tirnalge is one of two special triangles (the other being the 30-60-90) and here is its special property: the sides opposite these angles can be put as x, x, and x√2 respectively. Why? Well, we know that our triangle is isoceles (the congruent base angles ⇔ congruent sides) and so we call those x...by the Pythagorean theorem...a² + b² = c²...2x² = c²...x√2 = c!
In our case here, that diagonal, being the hypotenuse of our triangle, is going to be 90√2 feet, or approximately 127.3 feet.
Answer:
30 units
Step-by-step explanation:
If the w=5 and we know that the length is 2(5)=10
For perimeter, there are two sides.
2(10)+2(5)=30 units