Let us assume then that the center is the origin.  If the major axis is 18, then a = 9 and a^2=81.  If the minor axis is 16, then b = 8 and b^2=64.  Now you can write the equation.  Remember that this ellipse is vertical and so a^2 goes under y^2
        
                    
             
        
        
        
Solution:
<u>Note that:</u>
- Men:Woman = 3:2
- 54 women = Total woman in a company
<u>3:2 can also be written as 3x:2x.</u>
- => Men:54 = 3x:2x
- => 54 = 2x
- => x = 27
- => Men = 3x
- => Men = 3(27) = 81 
- => Total employees: 81 + 54
- => Total employees: 135
There are 135 employees in total.
 
        
                    
             
        
        
        
Answer:
2
Step-by-step explanation:
 
        
             
        
        
        
Start on the left side.<span><span><span>−<span>cot<span>(t)</span></span></span>+<span><span>sin<span>(t)</span></span><span>1<span>−<span>cos<span>(t)</span></span></span></span></span></span><span><span>-<span>cott</span></span>+<span><span>sint</span><span>1<span>-<span>cost</span></span></span></span></span></span>Multiply <span><span><span>sin<span>(t)</span></span><span>1<span>−<span>cos<span>(t)</span></span></span></span></span><span><span>sint</span><span>1<span>-<span>cost</span></span></span></span></span> by <span><span><span>1+<span>cos<span>(t)</span></span></span><span>1+<span>cos<span>(t)</span></span></span></span><span><span>1+<span>cost</span></span><span>1+<span>cost</span></span></span></span>.<span><span><span>−<span>cot<span>(t)</span></span></span>+<span><span><span>sin<span>(t)</span></span><span>1<span>−<span>cos<span>(t)</span></span></span></span></span><span><span>1+<span>cos<span>(t)</span></span></span><span>1+<span>cos<span>(t)</span></span></span></span></span></span><span><span>-<span>cott</span></span>+<span><span><span>sint</span><span>1<span>-<span>cost</span></span></span></span><span><span>1+<span>cost</span></span><span>1+<span>cost</span></span></span></span></span></span>Combine.<span><span>−<span>cot<span>(t)</span></span></span>+<span><span><span>sin<span>(t)</span></span><span>(<span>1+<span>cos<span>(t)</span></span></span>)</span></span><span>(<span>1<span>−<span>cos(t</span></span></span></span></span></span>−<span><span>cot<span>(t)</span></span>+<span><span><span>sin<span>(t)</span></span>+<span><span>sin<span>(t)</span></span><span>cos<span>(t)</span></span></span></span><span><span>(<span>1<span>−<span>cos<span>(t)</span></span></span></span>)</span><span>(<span>1+<span>cos<span>(t)</span></span></span>)</span></span></span></span><span>-<span>cott</span></span>+<span><span><span>sint</span>+<span><span>sint</span><span>cost</span></span></span><span><span>1<span>-<span>cost</span></span></span><span>1+<span>cost</span></span></span></span><span><span>))</span><span>(<span>1+<span>cos<span>(t)</span></span></span>)</span></span>−
<span><span><span>cot<span>(t)</span></span>+<span><span><span>sin<span>(t)</span></span>+<span><span>sin<span>(t)</span></span><span>cos<span>(t)</span></span></span></span><span>1<span>−<span>cos2</span><span>(t)</span></span></span></span></span><span><span>-<span>cott</span></span>+<span><span><span>sint</span>+<span><span>sint</span><span>cost</span></span></span><span>1<span>-<span>cos2</span>t</span></span></span></span></span>Apply pythagorean identity.<span><span><span>−<span>cot<span>(t)</span></span></span>+<span><span><span>sin<span>(t)</span></span>+<span><span>sin<span>(t)</span></span><span>cos<span>(t)</span></span></span></span><span><span>sin2</span><span>(t)</span></span></span></span><span><span>-<span>cott</span></span>+<span><span><span>sint</span>+<span><span>sint</span><span>cost</span></span></span><span><span>sin2</span>t</span></span></span></span>Write <span><span>cot<span>(t)</span></span><span>cott</span></span> in sines and cosines using the quotient identity.<span><span><span>−<span><span>cos<span>(t)</span></span><span>sin<span>(t)</span></span></span></span>+<span><span><span>sin<span>(t)</span></span>+<span><span>sin<span>(t)</span></span><span>cos<span>(t)</span></span></span></span><span><span>sin2</span><span>(t)</span></span></span></span><span><span>-<span><span>cost</span><span>sint</span></span></span>+<span><span><span>sint</span>+<span><span>sint</span><span>cost</span></span></span><span><span>sin2</span>t</span></span></span></span>Simplify.1<span><span>sin<span>(t)</span></span><span>1<span>sint</span></span></span>Rewrite <span><span>1<span>sin<span>(t)</span></span></span><span>1<span>sint</span></span></span> as <span><span>csc<span>(t)</span></span><span>csct</span></span>.<span><span>csc<span>(t)</span></span><span>csct</span></span>Because the two sides have been shown to be equivalent, the equation is an identity.<span><span><span><span>−<span>cot<span>(t)</span></span></span>+<span><span>sin<span>(t)</span></span><span>1<span>−<span>cos<span>(t)</span></span></span></span></span></span>=<span>csc<span>(t)</span></span></span><span><span><span>-<span>cott</span></span>+<span><span>sint</span><span>1<span>-<span>cost</span></span></span></span></span>=<span>csct</span></span></span> is an <span>identity
</span>
        
             
        
        
        
Answer:
1030.95
Step-by-step explanation:
here is the formula 

- t is the final amount after x years
when you plug everything in it is

now just plug into a scientific calculator.
1030.95