Answer:
3.84% probability that it has a low birth weight
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

If we randomly select a baby, what is the probability that it has a low birth weight?
This is the pvalue of Z when X = 2500. So



has a pvalue of 0.0384
3.84% probability that it has a low birth weight
Answer:
- 3a + 6
Step-by-step explanation:
subtract and add like items together like
- 4a + a = -3a
b-b= 0
and
9-3 = 6
so the answer is
-3a +6
3.) An extreme value refers to a point on the graph that is possibly a maximum or minimum. At these points, the instantaneous rate of change (slope) of the graph is 0 because the line tangent to the point is horizontal. We can find the rate of change by taking the derivative of the function.
y' = 2ax + b
Now that we where the derivative, we can set it equal to 0.
2ax + b = 0
We also know that at the extreme value, x = -1/2. We can plug that in as well.

The 2 and one-half cancel each other out.


Now we know that a and b are the same number, and that ax^2 + bx + 10 = 0 at x = -1/2. So let's plug -1/2 in for x in the original function, and solve for a/b.
a(-0.5)^2 + a(-0.5) + 10 = 0
0.25a - 0.5a + 10 = 0
-0.25a = -10
a = 40
b = 40
To determine if the extrema is a minima or maxima, we need to go back to the derivative and plug in a/b.
80x + 40
Our critical number is x = -1/2. We need to plug a number that is less than -1/2 and a number that is greater than -1/2 into the derivative.
LESS THAN:
80(-1) + 40 = -40
GREATER THAN:
80(0) + 40 = 40
The rate of change of the graph changes from negative to positive at x = -1/2, therefore the extreme value is a minimum.
4.) If the quadratic function is symmetrical about x = 3, that means that the minimum or maximum must be at x = 3.
y' = 2ax + 1
2a(3) + 1 = 0
6a = -1
a = -1/6
So now plug the a value and x=3 into the original function to find the extreme value.
(-1/6)(3)^2 + 3 + 3 = 4.5
The extreme value is 4.5
Answer:
PEMDAS
Step-by-step explanation:
parenthesis
Exponents
Multiply
Divide
Add
Subtract