The number of ways in which the name 'ESTABROK' can be made with no restrictions is 40, 320 ways.
<h3>How to determine the number of ways</h3>
Given the word:
ESTABROK
Then n = 8
p = 6
The formula for permutation without restrictions
P = n! ( n - p + 1)!
P = 8! ( 8 - 6 + 1) !
P = 8! (8 - 7)!
P = 8! (1)!
P = 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 × 1
P = 40, 320 ways
Thus, the number of ways in which the name 'ESTABROK' can be made with no restrictions is 40, 320 ways.
Learn more about permutation here:
brainly.com/question/4658834
#SPJ1
4. Let the numbers be x - 2, x, and x + 2, where x is an odd number.
2(x² - 4) - 4x = (x + 2)² + 21
2x² - 8 - 4x = x² + 4x + 4 + 21
2x² - 4x - 8 = x² + 4x + 25
x² - 8x - 33 = 0
(x - 11)(x + 3) = 0
x = 11, or -3
When x = 11, x - 2 = 9, x + 2 = 13
When x = -3, x - 2 = -5, x + 2 = -1
Explanation: You are on the right track. However, rather than having three unknown variables, try to reduce your working out to one unknown variable. Since you know they are consecutive odd numbers, you can simply let x be the middle term and the other two be + and - 2, provided x is an odd number.
That will reduce your variable issues, and helps as the first and third provide a difference of two squares, and this works out very nicely.
Q5: is essentially the same process. Let your variables be something in the form of one unknown variable, and you should be okay from there. Let me know if you're stuck.
I SPEAK ENGLISH SIR umm pipi è presa a um fio
Answer:
Distributive
Step-by-step explanation:
In any problem with a form of A(b+c) you are distributing the A to both b and c
As you can see in your example, you are distributing the 7 to both the 8 and the two
If you were to solve this problem the final answer would be 70
The property is Distributive
Answer:
o = 54
Step-by-step explanation:
The angle sum theorem tells you the sum of angles in a triangle is 180°. The definition of a linear pair tells you the two angles of a linear pair total 180°. Together, these relations tell you that an exterior angle of a triangle is equal to the sum of the remote interior angles.
In this geometry, the angle marked 78° is exterior to the left-side triangle. That means ...
78° = o° +24°
o° = 78° -24° = 54°
The value of 'o' is 54.
__
<em>Additional comment</em>
n° is the supplement of 78°, so is 102°.
m° is the difference between 102° and 22°, so is 80°.