There are 1.2 moles of KBr found in 3 Liters of 0.4 M solution.
<h3>HOW TO CALCULATE NUMBER OF MOLES?</h3>
The number of moles of a substance can be calculated by multiplying the molarity by the volume.
No. of moles = Molarity × volume
According to this question, 3L of a KBr solution are contained in a 0.4M.
no. of moles = 3L × 0.4M = 1.2moles
Therefore, there are 1.2 moles of KBr found in 3 Liters of 0.4 M solution.
Learn more about no. of moles at: brainly.com/question/14919968
The atomic mass of Europium is 152 amu
Work:
151(0.4803) = 72.52 amu
153(0.5197) = 79.5 amu
72.5 + 79.5 = 152 amu
Answer:
do you have any vocabulary to help you with this or no
(a) One form of the Clausius-Clapeyron equation is
ln(P₂/P₁) = (ΔHv/R) * (1/T₁ - 1/T₂); where in this case:
Solving for ΔHv:
- ΔHv = R * ln(P₂/P₁) / (1/T₁ - 1/T₂)
- ΔHv = 8.31 J/molK * ln(5.3/1.3) / (1/358.96 - 1/392.46)
(b) <em>Normal boiling point means</em> that P = 1 atm = 101.325 kPa. We use the same formula, using the same values for P₁ and T₁, and replacing P₂ with atmosferic pressure, <u>solving for T₂</u>:
- ln(P₂/P₁) = (ΔHv/R) * (1/T₁ - 1/T₂)
- 1/T₂ = 1/T₁ - [ ln(P₂/P₁) / (ΔHv/R) ]
- 1/T₂ = 1/358.96 K - [ ln(101.325/1.3) / (49111.12/8.31) ]
(c)<em> The enthalpy of vaporization</em> was calculated in part (a), and it does not vary depending on temperature, meaning <u>that at the boiling point the enthalpy of vaporization ΔHv is still 49111.12 J/molK</u>.
Answer:
207.89g
Explanation:
The formula of the compound is:
Fe₂S₃
Find the molar mass of the compound;
Atomic mass of Fe = 55.845g/mol
S = 32.065g/mol
Now;
Molar mass of Fe₂S₃ = 2 (55.845) + 3 (32.065)
= 207.89g